Advertisement

Der Ophthalmologe

, Volume 114, Issue 3, pp 215–223 | Cite as

Systematische Fehler in klinischen Studien

Eine Übersicht
  • W. A. Golder
Übersichten

Zusammenfassung

Die systematischen Fehler stellen eine ernste Herausforderung für die Qualität der klinischen Forschung dar. Sie können dazu führen, dass selbst sonst methodisch anspruchsvolle Untersuchungen zu Ergebnissen führen, die von den wahren Werten abweichen. In der forschenden Medizin werden die systematischen Fehler nach ihrer Zugehörigkeit zu den zeitlich aufeinanderfolgenden Abschnitten einer Studie in 6 Gruppen eingeteilt. Man unterscheidet dabei die Phasen der literarischen Vorarbeiten, der Gestaltung der Studie und Auswahl der Teilnehmer, der Durchführung und Dokumentation, der Analyse, der Interpretation und schließlich der Veröffentlichung der Ergebnisse. Die für diagnostische und Interventionsstudien wichtigsten Verzerrungen entstehen durch klinische Vorinformationen, gezielte Gestaltung der Studie, zweckbestimmte Auswahl der Teilnehmer, Vergleich mit historischen Kollektiven, Folgen der Vorverlegung des Zeitpunkts der Diagnose und die überproportional große Häufigkeit von Erkrankungsformen, die einen langsamen Verlauf nehmen. Vielfach trifft man bei der Prüfung der Messwerte auf ein Mosaik von systematischen Fehlern, unter denen einer mehr oder weniger dominiert. Die meisten Verzerrungen lassen sich auch durch große Sorgfalt bei der Planung und Durchführung der Studie nicht beseitigen, sondern nur verringern. Es ist unverzichtbar, jeden erkannten systematischen Fehler als mögliche Ursache oder Teilursache einer bei der Untersuchung beobachteten Verknüpfung zu analysieren. Die Auseinandersetzung mit den systematischen Fehlern ist ein substanzielles Element des Diskussionsteils jedes Forschungsberichts und ein Eckpfeiler für die Beurteilung seiner wissenschaftlichen Qualität.

Schlüsselwörter

Fehlerquellen Systematischer Fehler Klinische Studie Verblindung Randomisierung 

Systematic errors in clinical studies

A comprehensive survey

Abstract

Systematic errors and related phenomena represent an intrinsic challenge to the quality of clinical research. As a consequence even otherwise methodologically demanding studies may produce results that systematically differ from the true values. Systematic errors relating to investigative medicine are divided into six groups according to their affiliation with the consecutive chronological sections of the study. Bias can occur in preliminary literature research in the field, specifying the study design and selecting the study sample, measuring exposure and outcome, analyzing the data, interpreting the analyses and publishing the results. The most important systematic errors that concern diagnostic and interventional studies are created by access to the data of previous tests, calculated study design, preselection of the participants, comparison with non-contemporaneous controls, antedating the time of diagnosis and overdiagnosis of slowly progressive forms of diseases examined. Checking the measured values often leads to a mosaic of several biases with one being more or less dominant. Even by exercising due care in the preparation and performance of the study, the majority of distortions cannot be eliminated but only diminished. It is essential to consider each detected bias as a potential full or partial argument in support of an observed correlation. The control of systematic errors and related phenomena is both a significant element of the discussion of the study report and a key element for assessment of its scientific value.

Keywords

Sources of error Bias Clinical study Blinding Randomization 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

W.A. Golder gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Van der Aalst M, van Iersel CA, van Klaveren RJ (2012) Generalisability of the results of the Dutch-Belgian randomised controlled lung cancer CT screening trial (NELSON): does self-selection play a role? Lung Cancer 77:51–57CrossRefPubMedGoogle Scholar
  2. 2.
    Aberegg SK, Haponik EF, Terry PB (2005) Omission bias and decision making in pulmonary and critical care medicine. Chest 128:1497–1505CrossRefPubMedGoogle Scholar
  3. 3.
    Adams HJ, Kwee TC, Nievelstein RA (2013) Influence of imperfect reference standard bias on the diagnostic performance of MRI in the detection of lymphomatous bone marrow involvement. Clin Radiol 68:750–751CrossRefPubMedGoogle Scholar
  4. 4.
    Austin MA, Criqui MH, Barrett-Connor E, Holdbrook MJ (1981) The effect of response bias on the odds ratio. Am J Epidemiol 114:137–143CrossRefPubMedGoogle Scholar
  5. 5.
    Backer MW, Lee KS, Blankenbaker DG, Kijowski R, Keene JS (2014) Correlation of ultrasound-guided corticosteroid injection of the quadratus femoris with MRI findings of ischiofemoral impingement. AJR Am J Roentgenol 203:589–593CrossRefPubMedGoogle Scholar
  6. 6.
    Baltzer PAT, Dietzel M (2013) Breast lesions: diagnosis by using proton MR spectroscopy at 1.5 and 3.0 T – systematic review and meta-analysis. Radiology 267:735–746CrossRefPubMedGoogle Scholar
  7. 7.
    Baron J (2008) Thinking and deciding, 4. Aufl. Cambridge University Press, Cambridge, S 157 (171, 177, 406–409, 507–515)Google Scholar
  8. 8.
    Bashir MR, Sirlin CB, Reeder SB (2015) On confirmation bias in imaging research. J Magn Reson Imaging 41:1163–1164CrossRefPubMedGoogle Scholar
  9. 9.
    Begg CB, McNeil BJ (1988) Assessment of radiologic tests: control of bias and other design considerations. Radiology 167:565–569CrossRefPubMedGoogle Scholar
  10. 10.
    Beggs AD, Dilworth MP, Powell SL, Atherton H, Griffiths EA (2014) A systematic review of transarterial embolization versus emergency surgery in treatment of major nonvariceal upper gastrointestinal bleeding. Clin Exp Gastroenterol 7:93–104CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Berry DA (2014) Failure of researchers, reviewers, editors, and the media to understand flaws in cancer screening studies: application to an article in Cancer. Cancer 120:2784–2791CrossRefPubMedGoogle Scholar
  12. 12.
    Bhatt DL, Kandzari DE, O’Neill WW et al (2014) A controlled trial of renal denervation for resistant hypertension. N Engl J Med 370:1393–1401CrossRefPubMedGoogle Scholar
  13. 13.
    Brealey S, Scally AJ (2001) Bias in plain film reading performance studies. BMJ 74:307–316Google Scholar
  14. 14.
    Callaham ML, Wears RL, Weber EJ, Barton C, Young G (1998) Positive-outcome bias and other limitations in the outcome of research abstracts submitted to a scientific meeting. JAMA 280:254–257 (Erratum in: JAMA 280:1232)CrossRefPubMedGoogle Scholar
  15. 15.
    Cecil MP, Kosinski AS, Jones MT et al (1996) The importance of work-up (verification) bias correction in assessing the accuracy of SPECT-thallium-201 testing for the diagnosis of coronary artery disease. J Clin Epidemiol 49:735–742CrossRefPubMedGoogle Scholar
  16. 16.
    Chalmers I (1990) Underreporting research is scientific misconduct. JAMA 263:1405–1408CrossRefPubMedGoogle Scholar
  17. 17.
    Champion GA, Piccirillo JF (2004) The impact of computed tomography on pretherapeutic staging in patients with laryngeal cancer: demonstration of the Will Rogers’ phenomenon. Head Neck 26:972–976CrossRefPubMedGoogle Scholar
  18. 18.
    Coughlin SS (1990) Recall bias in epidemiologic studies. J Clin Epidemiol 43:87–91CrossRefPubMedGoogle Scholar
  19. 19.
    Deeks JJ, Macaskill P, Irwig L (2005) The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol 58:882–893CrossRefPubMedGoogle Scholar
  20. 20.
    Delgado-Rodriguez M, Llorca J (2004) Continuing professional education: bias. J Epidemiol Community Health 58:635–641CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Denson AC, Mahipal A (2014) Participation of the elderly population in clinical trials: barriers and solutions. Cancer Control 21:209–214PubMedGoogle Scholar
  22. 22.
    Dismuke CE (2005) Underreporting of computed tomography and magnetic resonance imaging procedures in inpatient claims data. Med Care 43:713–717CrossRefPubMedGoogle Scholar
  23. 23.
    Egglin TK, Feinstein AR (1996) Context bias. A problem in diagnostic radiology. JAMA 276:1752–1755CrossRefPubMedGoogle Scholar
  24. 24.
    Emerson GB, Warme WJ, Wolf FM, Heckman JD, Brand RA, Leopold SS (2010) Testing for the presence of positive-outcome bias in peer review: a randomised controlled trial. Arch Intern Med 170:1934–1939CrossRefPubMedGoogle Scholar
  25. 25.
    Erly WK, Tran M, Dillon RC, Krupinski E (2010) Impact of hindsight bias on interpretation of nonenhanced computed tomographic head scans for acute stroke. J Comput Assist Tomogr 34:229–232CrossRefPubMedGoogle Scholar
  26. 26.
    Fox AJ, White GC (1976) Bladder cancer in rubber workers. Do screening and doctor’s awareness distort the statistics? Lancet 307:1009–1011CrossRefGoogle Scholar
  27. 27.
    Golder WA (2009) Das Will-Rogers-Phänomen und seine Bedeutung für die bildgebende Diagnostik. Radiologe 49:348–354CrossRefPubMedGoogle Scholar
  28. 28.
    Grimes DA, Schulz KF (2002) Bias and causal associations in observational research. Lancet 359:248–252CrossRefPubMedGoogle Scholar
  29. 29.
    Herliczek TW, Swenson DW, Mayo-Smith WW (2013) Utility of MRI after inconclusive ultrasound in pediatric patients with suspected appendicitis: retrospective review of 60 consecutive patients. AJR Am J Roentgenol 200:969–973CrossRefPubMedGoogle Scholar
  30. 30.
    Higgins JPT, Altman DG, Gøtzsche PC, Cochrane Bias Methods Group, Cochrane Statistical Methods Group et al (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Hill G, Connelly J, Hébert R, Lindsay J, Millar W (2003) Neyman’s bias re-visited. J Clin Epidemiol 56:293–296CrossRefPubMedGoogle Scholar
  32. 32.
    Howitz RI, McFarlane MJ, Brennan TA, Feinstein A (1985) The role of susceptibility bias in epidemiologic research. Arch Intern Med 145:909–912CrossRefGoogle Scholar
  33. 33.
    Hubbard A, Jamshidian F, Jewell N (2012) Adjusting for perception and unmasking effects in longitudinal clinical trials. Int J Biostat 8:7CrossRefPubMedGoogle Scholar
  34. 34.
    Jha S (2015) Thinking beyond the treatment effect in screening for lung cancer. Acad Radiol 22:983–984CrossRefPubMedGoogle Scholar
  35. 35.
    Kaptchuk TJ (2003) Effect of interpretive bias on research evidence. BMJ 326:1453–1455CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kennedy MT, Ong JC, Mitra A, Harty JA, Reidy D, Dolan M (2013) The use of weekly departmental review of all orthopaedic intra-operative radiographs in order to improve quality, due do standardized peer expectations and the „Hawthorne effect“. Surgeon 11:10–13CrossRefPubMedGoogle Scholar
  37. 37.
    Kent DL, Haynor DR, Longstreth WT Jr, Larson EB (1994) The clinical efficacy of magnetic resonance imaging in neuroimaging. Ann Intern Med 120:856–871CrossRefPubMedGoogle Scholar
  38. 38.
    Kim HH, Richardson D, Loomis D, Van Tongeren M, Burstyn I (2011) Bias in the estimation of exposure effects with individual- or group-based exposure assessment. J Expo Sci Environ Epidemiol 21:212–221CrossRefPubMedGoogle Scholar
  39. 39.
    Kleist P (2006) Vier Effekte, Phänomene und Paradoxe in der Medizin. Schweiz Med Forum 6:1023–1027Google Scholar
  40. 40.
    Kojima S, Zhou B, Teramukam S et al (2007) Cancer screening of healthy volunteers using whole-body 18F-FDG-PET scans: The Nishidai clinic study. Eur J Cancer 43:1842–1848CrossRefPubMedGoogle Scholar
  41. 41.
    Kok P, Pitman AG, Cawson NJ et al (2010) Diagnostic accuracy of mammography readers and their memory performance have no correlation with each other. J Med Imaging Radiat Oncol 54:315–324CrossRefPubMedGoogle Scholar
  42. 42.
    Kramer MS, Boivin J‑F (1987) Toward an „unconfounded“ classification of epidemiologic research design. J Chronic Dis 40:683–688CrossRefPubMedGoogle Scholar
  43. 43.
    Lader EW, Cannon CP, Ohman EM et al (2004) The clinician as investigator: participating in clinical trials in the practice setting. Circulation 109:2672–2679CrossRefPubMedGoogle Scholar
  44. 44.
    Marquering HA, Majoie CB, Smagge L et al (2011) The relation of carotid calcium volume with carotid artery stenosis in symptomatic patients. Am J Neuroradiol 32:1182–1187CrossRefPubMedGoogle Scholar
  45. 45.
    Mazzone PJ, Mekhail T (2007) Lung cancer screening. Curr Oncol Rep 9:265–274CrossRefPubMedGoogle Scholar
  46. 46.
    Moroz V, Wilson JS, Kearns P, Whealey K (2014) Comparison of anticipated and actual control group outcomes in randomised trials in paediatric oncology provides evidence that historically controlled studies are biased in favour of the novel treatment. Trials 15:481CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Mullen MT, Cucchiara BL (2011) Redefinition of transient ischemic attack improves prognosis of transient ischemic attack and ischemic stroke: an example of the will rogers phenomenon. Stroke 42:3612–3613CrossRefPubMedGoogle Scholar
  48. 48.
    Murphy EA (1997) The logic of medicine, 2. Aufl. Johns Hopkins University Press, Baltimore, S 345–370Google Scholar
  49. 49.
    Nio CY, De Vries AH, Stoker J (2007) Perceptive errors in CT colonography. Abdom Imaging 32:556–570CrossRefPubMedGoogle Scholar
  50. 50.
    Njor SH, Olsen AH, Blichert-Toft M, Schwartz W, Vejborg I, Lynge E (2013) Overdiagnosis in screening mammography in Denmark: population based cohort study. BMJ 346:f1064. doi: 10.1136/bmj.f.1064 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Obuchowski NA (2003) Special topics III: bias. Radiology 229:617–621CrossRefPubMedGoogle Scholar
  52. 52.
    Petscavage JM, Richardson ML, Carr RB (2011) Verification bias an underrecognized source of error in assessing the efficacy of medical imaging. Acad Radiol 18:343–346CrossRefPubMedGoogle Scholar
  53. 53.
    Pua U, Tan CH, Ho HH, Tan JK, Ong PJ (2014) Revisiting renovascular imaging for renal sympathetic denervation: current techniques and applications. Eur Radiol 25:444–453CrossRefPubMedGoogle Scholar
  54. 54.
    Reid MC, Lachs MS, Feinstein AR (1995) Use of methodological standards in diagnostic test research. Getting better but still not good. JAMA 274:645–651CrossRefPubMedGoogle Scholar
  55. 55.
    Resch KI, Ernst E, Garrow J (2000) A randomized controlled study of reviewer bias against an unconventional therapy. J R Soc Med 93:164–167PubMedPubMedCentralGoogle Scholar
  56. 56.
    Richardson ML, Petscavage JM (2011) Verification bias: an under-recognized source of error in assessing the efficacy of MRI in the meniscii. Acad Radiol 18:1376–1381CrossRefPubMedGoogle Scholar
  57. 57.
    Sackett DL (1979) Bias in analytic research. J Chronic Dis 32:51–63CrossRefPubMedGoogle Scholar
  58. 58.
    Sica GT (2006) Bias in research studies. Radiology 238:780–789CrossRefPubMedGoogle Scholar
  59. 59.
    Soda H, Oka M, Tomita H, Nagashima S, Soda M, Kohno S (1999) Length and lead time biases in radiologic screening for lung cancer. Respiration 66:511–517CrossRefPubMedGoogle Scholar
  60. 60.
    Soh BP, Lee W, Kench PL et al (2012) Assessing reader performance in radiology, an imperfect science: lessons from breast screening. Clin Radiol 67:623–628CrossRefPubMedGoogle Scholar
  61. 61.
    Sterne JA, Hernán MA, Reedyes BC et al (2016) ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ 355:i4919CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Sun H, Xue HD, Wang YN et al (2013) Dual-source dual-energy computed tomography angiography for active gastrointestinal bleeding: a preliminary study. Clin Radiol 68:139–147CrossRefPubMedGoogle Scholar
  63. 63.
    Tabar L, Duffy SW, Yen MF et al (2002) All-cause mortality among breast cancer patients in a screening trial: support for breast cancer mortality as an end point. J Med Screen 9:159–162CrossRefPubMedGoogle Scholar
  64. 64.
    Torgerson DJ (2001) Contamination in trials: is cluster randomisation the answer? BMJ 322:355–357CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Vestbo J, Anderson JA, Calverley PM et al (2011) Bias due to withdrawal in long-term randomised trials in COPD: evidence from the TORCH study. Clin Respir J 5:44–49CrossRefPubMedGoogle Scholar
  66. 66.
    Walsh MC, Trentham-Dietz A, Gangnon RE, Nieto FJ, Newcomb PA, Palta M (2012) Selection bias in population-based cancer case-control studies due to incomplete sampling frame coverage. Cancer Epidemiol Biomarkers Prev 21:881–886CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Whiting PF, Rutjes AW, Westwood ME et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536CrossRefPubMedGoogle Scholar
  68. 68.
    Whiting P, Savokič J, Higgins JPT et al (2016) ROBIS: A new tool to assess risk of bias in systematic reviews was developed. J Clin Epidemiol 69:225–234CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH 2017

Authors and Affiliations

  1. 1.AvignonFrankreich

Personalised recommendations