Der Ophthalmologe

, Volume 114, Issue 8, pp 705–715 | Cite as

Korneale Zelltherapie – Eine Übersicht

  • M. Fuest
  • G. Hin-Fai Yam
  • G. Swee-Lim Peh
  • P. Walter
  • N. Plange
  • J. S. Mehta
Übersichten

Zusammenfassung

Die Kultivierung und Expansion von primären kornealen Zellen verzeichnet große Fortschritte in den letzten Jahren. Die Transplantation von kultivierten limbalen Epithelzellen ist bereits eine etablierte, erfolgreiche Therapie der okulären Oberfläche. Kultivierte korneale Endothelzellen werden derzeit in einer klinischen Studie in Japan getestet. Stromale Keratozyten können in vitro expandiert werden. Auch andere Stammzellgruppen können zu kornealen Zellen differenzieren und werden in Tiermodellen auf ihre Eignung überprüft. Bis zu ihrem klinischen Einsatz müssen allerdings noch Prozesse optimiert und vereinheitlicht, die Differenzierungseffizienz gesteigert und ethische Probleme adressiert werden. In diesem Übersichtsartikel fassen wir die aktuellen Entwicklungen im Bereich der kornealen Zelltherapie zusammen.

Schlüsselwörter

Zelltherapie Hornhaut Transplantation Stammzellen Tissue Engineering 

Abkürzungen

ALK

Anteriore lamelläre Keratoplastik

AM

Amnionmembran

CLAL

Conjunctivolimbal allograft

CLAU

Conjunctivolimbal autograft

CLET

Cultivated limbal epithelium transplantation

COMET

Kultivierte orale Mukosaepitheliumtransplantation

DPSZ

Dentale Pulpastammzellen

ESZ

Embryonale Stammzellen

EZM

Extrazellulärmatrix

GMP

Good Manufacturing Practice

IPSZ

Induzierte pluripotente Stammzellen

KEpZ

Korneale Epithelzellen

KEZ

Korneale Endothelzellen

KoEpZ

Konjunktivale Epithelzellen

KSK

Korneale stromale Keratozyten

KSSZ

Korneale stromale Stammzellen

LSZ

Limbale Stammzellen

LSZI

Limbusstammzellinsuffizienz

MSZ

Mesenchymale Stammzellen

PK

Penetrierende Keratoplastik

PLGA

Polylactic-co-glycolic acid

ROCK

Rho-associated protein kinase

SF

Stromale Fibroblasten

SLET

Simple limbal epithelial transplantation

SZ

Stammzellen

TE-DSEK

Tissue-engineered Descemet stripping endothelial keratoplasty

TGF

Transforming growth factor

Corneal cell therapy—an overview

Abstract

In recent years, the cultivation and expansion of primary corneal cells has made significant progress. The transplantation of cultured limbal epithelial cells represents a successful and established treatment of the ocular surface. Cultivated corneal endothelial cells are undergoing a clinical trial in Japan. Stromal keratocytes can now be expanded in vitro. A wide range of stem cell sources is being tested in vitro and animal models for their possible application in corneal cell therapy. This article gives an overview of recent advancements and prevailing limitations for the use of different cell sources in the therapy of corneal disease.

Keywords

Cell therapy Cornea Transplantation Stem cell Tissue engineering 

Literatur

  1. 1.
    Delmonte DW, Kim T (2011) Anatomy and physiology of the cornea. J Cataract Refract Surg 37:588–598PubMedGoogle Scholar
  2. 2.
    Nakamura T, Inatomi T, Sotozono C et al (2016) Ocular surface reconstruction using stem cell and tissue engineering. Prog Retin Eye Res 51:187–207PubMedGoogle Scholar
  3. 3.
    O’callaghan AR, Daniels JT (2011) Concise review: limbal epithelial stem cell therapy: controversies and challenges. Stem Cells 29:1923–1932PubMedGoogle Scholar
  4. 4.
    Du Y, Funderburgh ML, Mann MM et al (2005) Multipotent stem cells in human corneal stroma. Stem Cells 23:1266–1275PubMedPubMedCentralGoogle Scholar
  5. 5.
    Pascolini D, Mariotti SP (2012) Global estimates of visual impairment: 2010. Br J Ophthalmol 96:614–618PubMedGoogle Scholar
  6. 6.
    Bonanno JA (2012) Molecular mechanisms underlying the corneal endothelial pump. Exp Eye Res 95:2–7PubMedGoogle Scholar
  7. 7.
    Yu WY, Sheridan C, Grierson I et al (2011) Progenitors for the corneal endothelium and trabecular meshwork: a potential source for personalized stem cell therapy in corneal endothelial diseases and glaucoma. J Biomed Biotechnol 2011:412743PubMedPubMedCentralGoogle Scholar
  8. 8.
    Tan DT, Dart JK, Holland EJ et al (2012) Corneal transplantation. Lancet 379:1749–1761PubMedGoogle Scholar
  9. 9.
    De By TM (2003) Shortage in the face of plenty: improving the allocation of corneas for transplantation. Dev Ophthalmol 36:56–61PubMedGoogle Scholar
  10. 10.
    Van Meter MD, Spears W, Sheth PH (2013) Potential adverse effects on the cornea donor pool in 2031. Int J Eye Bank 1:1–9Google Scholar
  11. 11.
    Reinshagen H, Boehringer D, Seitz B et al (2015) Activities of the tissue transplantation and biotechnology section of the German Ophthalmological Society: 4. Performance report 2013. Ophthalmologe 112:70–72PubMedGoogle Scholar
  12. 12.
    Soh YQ, Peh GS, Mehta JS (2016) Translational issues for human corneal endothelial tissue engineering. J Tissue Eng Regen Med. doi:10.1002/term.2131 PubMedGoogle Scholar
  13. 13.
    Fuest M, Yam GH, Peh GS et al (2016) Advances in corneal cell therapy. Regen Med 11:601–615PubMedGoogle Scholar
  14. 14.
    Niederkorn JY (2005) Corneal immune privilege. Ocul Surf 3:S158PubMedGoogle Scholar
  15. 15.
    Baglio SR, Pegtel DM, Baldini N (2012) Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol 3:359PubMedPubMedCentralGoogle Scholar
  16. 16.
    Goldring CE, Duffy PA, Benvenisty N et al (2011) Assessing the safety of stem cell therapeutics. Cell Stem Cell 8:618–628PubMedGoogle Scholar
  17. 17.
    Hayashi R, Ishikawa Y, Ito M et al (2012) Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium. PLOS ONE 7:e45435PubMedPubMedCentralGoogle Scholar
  18. 18.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedGoogle Scholar
  19. 19.
    Rohaina CM, Then KY, Ng AM et al (2014) Reconstruction of limbal stem cell deficient corneal surface with induced human bone marrow mesenchymal stem cells on amniotic membrane. Transl Res 163:200–210PubMedGoogle Scholar
  20. 20.
    Tan X‑W, Setiawan M, Goh G et al (2014) Induction of human adipose derived stem cells into limbal epithelial cells for the reconstruction of corneal epithelium. Invest Ophthalmol Vis Sci 55:6041–6041Google Scholar
  21. 21.
    Liu H, Zhang J, Liu CY et al (2010) Cell therapy of congenital corneal diseases with umbilical mesenchymal stem cells: lumican null mice. PLOS ONE 5:e10707PubMedPubMedCentralGoogle Scholar
  22. 22.
    Liu H, Zhang J, Liu CY et al (2012) Bone marrow mesenchymal stem cells can differentiate and assume corneal keratocyte phenotype. J Cell Mol Med 16:1114–1124PubMedPubMedCentralGoogle Scholar
  23. 23.
    Dziasko MA, Daniels JT (2016) Anatomical features and cell-cell interactions in the human limbal epithelial stem cell niche. Ocul Surf 14:322–330PubMedGoogle Scholar
  24. 24.
    Kenyon KR, Tseng SC (1989) Limbal autograft transplantation for ocular surface disorders. Ophthalmology 96:709–722 (discussion 722–703)PubMedGoogle Scholar
  25. 25.
    Miri A, Al-Deiri B, Dua HS (2010) Long-term outcomes of autolimbal and allolimbal transplants. Ophthalmology 117:1207–1213PubMedGoogle Scholar
  26. 26.
    Santos MS, Gomes JA, Hofling-Lima AL et al (2005) Survival analysis of conjunctival limbal grafts and amniotic membrane transplantation in eyes with total limbal stem cell deficiency. Am J Ophthalmol 140:223–230PubMedGoogle Scholar
  27. 27.
    Pellegrini G, Traverso CE, Franzi AT et al (1997) Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 349:990–993PubMedGoogle Scholar
  28. 28.
    Basu S, Ali H, Sangwan VS (2012) Clinical outcomes of repeat autologous cultivated limbal epithelial transplantation for ocular surface burns. Am J Ophthalmol 153:643–650e2PubMedGoogle Scholar
  29. 29.
    Rama P, Matuska S, Paganoni G et al (2010) Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med 363:147–155PubMedGoogle Scholar
  30. 30.
    Tsai RJ, Li LM, Chen JK (2000) Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med 343:86–93PubMedGoogle Scholar
  31. 31.
    Sangwan VS, Basu S, Macneil S et al (2012) Simple limbal epithelial transplantation (SLET): a novel surgical technique for the treatment of unilateral limbal stem cell deficiency. Br J Ophthalmol 96:931–934PubMedGoogle Scholar
  32. 32.
    Amescua G, Atallah M, Nikpoor N et al (2014) Modified simple limbal epithelial transplantation using cryopreserved amniotic membrane for unilateral limbal stem cell deficiency. Am J Ophthalmol 158:469–475e2PubMedGoogle Scholar
  33. 33.
    Fatima A, Iftekhar G, Sangwan VS et al (2008) Ocular surface changes in limbal stem cell deficiency caused by chemical injury: a histologic study of excised pannus from recipients of cultured corneal epithelium. Eye (Lond) 22:1161–1167Google Scholar
  34. 34.
    Ricardo JR, Cristovam PC, Filho PA et al (2013) Transplantation of conjunctival epithelial cells cultivated ex vivo in patients with total limbal stem cell deficiency. Cornea 32:221–228PubMedGoogle Scholar
  35. 35.
    Sotozono C, Inatomi T, Nakamura T et al (2013) Visual improvement after cultivated oral mucosal epithelial transplantation. Ophthalmology 120:193–200PubMedGoogle Scholar
  36. 36.
    Chen HC, Yeh LK, Tsai YJ et al (2012) Expression of angiogenesis-related factors in human corneas after cultivated oral mucosal epithelial transplantation. Invest Ophthalmol Vis Sci 53:5615–5623PubMedGoogle Scholar
  37. 37.
    Kuckelkorn R, Schrage N, Redbrake C et al (1996) Autologous transplantation of nasal mucosa after severe chemical and thermal eye burns. Acta Ophthalmol Scand 74:442–448PubMedGoogle Scholar
  38. 38.
    Pang K, Zhang K, Zhu J et al (2015) Differentiation of human embryonic stem cells to corneal epithelium and endothelium like cells for cornea replacement construction. Invest Ophthalmol Vis Sci 56:5831–5831Google Scholar
  39. 39.
    Monteiro BG, Serafim RC, Melo GB et al (2009) Human immature dental pulp stem cells share key characteristic features with limbal stem cells. Cell Prolif 42:587–594PubMedGoogle Scholar
  40. 40.
    Gomes JA, Geraldes Monteiro B, Melo GB et al (2010) Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Invest Ophthalmol Vis Sci 51:1408–1414PubMedGoogle Scholar
  41. 41.
    Bronckaers A, Hilkens P, Fanton Y et al (2013) Angiogenic properties of human dental pulp stem cells. PLOS ONE 8:e71104PubMedPubMedCentralGoogle Scholar
  42. 42.
    Meyer-Blazejewska EA, Call MK, Yamanaka O et al (2011) From hair to cornea: toward the therapeutic use of hair follicle-derived stem cells in the treatment of limbal stem cell deficiency. Stem Cells 29:57–66PubMedPubMedCentralGoogle Scholar
  43. 43.
    Cieslar-Pobuda A, Rafat M, Knoflach V et al (2016) Human induced pluripotent stem cell differentiation and direct transdifferentiation into corneal epithelial-like cells. Oncotarget. doi:10.18632/oncotarget.9791 Google Scholar
  44. 44.
    Mikhailova A, Ilmarinen T, Uusitalo H et al (2014) Small-molecule induction promotes corneal epithelial cell differentiation from human induced pluripotent stem cells. Stem Cell Reports 2:219–231PubMedPubMedCentralGoogle Scholar
  45. 45.
    Hayashi R, Ishikawa Y, Sasamoto Y et al (2016) Co-ordinated ocular development from human iPS cells and recovery of corneal function. Nature 531:376–380PubMedGoogle Scholar
  46. 46.
    Feng Y, Borrelli M, Reichl S et al (2014) Review of alternative carrier materials for ocular surface reconstruction. Curr Eye Res 39:541–552PubMedGoogle Scholar
  47. 47.
    Johnston MC, Noden DM, Hazelton RD et al (1979) Origins of avian ocular and periocular tissues. Exp Eye Res 29:27–43PubMedGoogle Scholar
  48. 48.
    Petroll WM, Miron-Mendoza M (2015) Mechanical interactions and crosstalk between corneal keratocytes and the extracelular matrix. Exp Eye Res 133:49–57PubMedPubMedCentralGoogle Scholar
  49. 49.
    Funderburgh JL, Mann MM, Funderburgh ML (2003) Keratocyte phenotype mediates proteoglycan structure: a role for fibroblasts in corneal fibrosis. J Biol Chem 278:45629–45637PubMedPubMedCentralGoogle Scholar
  50. 50.
    Yam GH, Yusoff NZ, Kadaba A et al (2015) Ex vivo propagation of human corneal stromal “activated keratocytes” for tissue engineering. Cell Transplant 24:1845–1861PubMedGoogle Scholar
  51. 51.
    Du Y, Sundarraj N, Funderburgh ML et al (2007) Secretion and organization of a cornea-like tissue in vitro by stem cells from human corneal stroma. Invest Ophthalmol Vis Sci 48:5038–5045PubMedPubMedCentralGoogle Scholar
  52. 52.
    Du Y, Carlson EC, Funderburgh ML et al (2009) Stem cell therapy restores transparency to defective murine corneas. Stem Cells 27:1635–1642PubMedPubMedCentralGoogle Scholar
  53. 53.
    Chan AA, Hertsenberg AJ, Funderburgh ML et al (2013) Differentiation of human embryonic stem cells into cells with corneal keratocyte phenotype. PLOS ONE 8:e56831PubMedPubMedCentralGoogle Scholar
  54. 54.
    Ornelas LA, Bykhovskaya Y, Sareen D et al (2014) Derivation and characterization of human induced pluripotent stem cells from stromal keratocytes of patients with keratoconus. Invest Ophthalmol Vis Sci 55:4201–4201Google Scholar
  55. 55.
    Naylor RW, Mcghee CN, Cowan CA et al (2016) Derivation of corneal keratocyte-like cells from human induced pluripotent stem cells. PLOS ONE 11:e0165464PubMedPubMedCentralGoogle Scholar
  56. 56.
    Mittal SK, Omoto M, Amouzegar A et al (2016) Restoration of corneal transparency by mesenchymal stem cells. Stem Cell Reports 7:583–590PubMedPubMedCentralGoogle Scholar
  57. 57.
    Syed-Picard FN, Du Y, Lathrop KL et al (2015) Dental pulp stem cells: a new cellular resource for corneal stromal regeneration. Stem Cells Transl Med 4:276–285PubMedPubMedCentralGoogle Scholar
  58. 58.
    Ma XY, Zhang Y, Zhu D et al (2015) Corneal stroma regeneration with acellular corneal stroma sheets and keratocytes in a rabbit model. PLOS ONE 10:e0132705PubMedPubMedCentralGoogle Scholar
  59. 59.
    Wilson SL, Sidney LE, Dunphy SE et al (2015) Corneal decellularization: a method of recycling unsuitable donor tissue for clinical translation? Curr Eye Res 41:769–782. doi:10.3109/02713683.2015.1062114 PubMedPubMedCentralGoogle Scholar
  60. 60.
    Fagerholm P, Lagali NS, Merrett K et al (2010) A biosynthetic alternative to human donor tissue for inducing corneal regeneration: 24-month follow-up of a phase 1 clinical study. Sci Transl Med 2:46ra61PubMedGoogle Scholar
  61. 61.
    Levis HJ, Kureshi AK, Massie I et al (2015) Tissue engineering the cornea: the evolution of RAFT. J Funct Biomater 6:50–65PubMedPubMedCentralGoogle Scholar
  62. 62.
    Mcintosh AW, Salahuddin A, So S et al (2009) Collagen Vitrigel membranes for the in vitro reconstruction of separate corneal epithelial, stromal, and endothelial cell layers. J Biomed Mater Res Part B Appl Biomater 90:818–831Google Scholar
  63. 63.
    Lai JY, Li YT, Cho CH et al (2012) Nanoscale modification of porous gelatin scaffolds with chondroitin sulfate for corneal stromal tissue engineering. Int J Nanomedicine 7:1101–1114PubMedPubMedCentralGoogle Scholar
  64. 64.
    Van Essen TH, Van Zijl L, Possemiers T et al (2016) Biocompatibility of a fish scale-derived artificial cornea: Cytotoxicity, cellular adhesion and phenotype, and in vivo immunogenicity. Biomaterials 81:36–45PubMedGoogle Scholar
  65. 65.
    Ma X, Bao H, Cui L et al (2013) The graft of autologous adipose-derived stem cells in the corneal stroma after mechanic damage. PLOS ONE 8:e76103PubMedPubMedCentralGoogle Scholar
  66. 66.
    Yam GH, Yusoff NZ, Goh TW et al (2016) Decellularization of human stromal refractive lenticules for corneal tissue engineering. Sci Rep 6:26339PubMedPubMedCentralGoogle Scholar
  67. 67.
    Li J, Yu L, Deng Z et al (2011) Deep anterior lamellar keratoplasty using acellular corneal tissue for prevention of allograft rejection in high-risk corneas. Am J Ophthalmol 152:762–770e3PubMedGoogle Scholar
  68. 68.
    Joyce NC, Harris DL, Mello DM (2002) Mechanisms of mitotic inhibition in corneal endothelium: contact inhibition and TGF-beta2. Invest Ophthalmol Vis Sci 43:2152–2159PubMedGoogle Scholar
  69. 69.
    Bourne WM, Nelson LR, Hodge DO (1997) Central corneal endothelial cell changes over a ten-year period. Invest Ophthalmol Vis Sci 38:779–782PubMedGoogle Scholar
  70. 70.
    Baum JL, Niedra R, Davis C et al (1979) Mass culture of human corneal endothelial cells. Arch Ophthalmol 97:1136–1140PubMedGoogle Scholar
  71. 71.
    Peh GS, Chng Z, Ang HP et al (2015) Propagation of human corneal endothelial cells: a novel dual media approach. Cell Transplant 24:287–304PubMedGoogle Scholar
  72. 72.
    Peh GS, Adnan K, George BL et al (2015) The effects of Rho-associated kinase inhibitor Y‑27632 on primary human corneal endothelial cells propagated using a dual media approach. Sci Rep 5:9167PubMedPubMedCentralGoogle Scholar
  73. 73.
    Guo Y, Liu Q, Yang Y et al (2015) The effects of ROCK inhibitor Y‑27632 on injectable spheroids of bovine corneal endothelial cells. Cell Reprogram 17:77–87PubMedPubMedCentralGoogle Scholar
  74. 74.
    Okumura N, Koizumi N, Ueno M et al (2011) The new therapeutic concept of using a rho kinase inhibitor for the treatment of corneal endothelial dysfunction. Cornea 30(Suppl 1):S54–S59PubMedGoogle Scholar
  75. 75.
    Okumura N, Nakano S, Kay EP et al (2014) Involvement of cyclin D and p27 in cell proliferation mediated by ROCK inhibitors Y‑27632 and Y‑39983 during corneal endothelium wound healing. Invest Ophthalmol Vis Sci 55:318–329PubMedGoogle Scholar
  76. 76.
    Peh GS, Toh KP, Wu FY et al (2011) Cultivation of human corneal endothelial cells isolated from paired donor corneas. PLOS ONE 6:e28310PubMedPubMedCentralGoogle Scholar
  77. 77.
    Zhu C, Joyce NC (2004) Proliferative response of corneal endothelial cells from young and older donors. Invest Ophthalmol Vis Sci 45:1743–1751PubMedGoogle Scholar
  78. 78.
    Matthaei M, Meng H, Meeker AK et al (2012) Endothelial Cdkn1a (p21) overexpression and accelerated senescence in a mouse model of Fuchs endothelial corneal dystrophy. Invest Ophthalmol Vis Sci 53:6718–6727PubMedPubMedCentralGoogle Scholar
  79. 79.
    Okumura N, Kay EP, Nakahara M et al (2013) Inhibition of TGF-beta signaling enables human corneal endothelial cell expansion in vitro for use in regenerative medicine. PLOS ONE 8:e58000PubMedPubMedCentralGoogle Scholar
  80. 80.
    Teichmann J, Valtink M, Gramm S et al (2013) Human corneal endothelial cell sheets for transplantation: thermo-responsive cell culture carriers to meet cell-specific requirements. Acta Biomater 9:5031–5039PubMedGoogle Scholar
  81. 81.
    Mimura T, Shimomura N, Usui T et al (2003) Magnetic attraction of iron-endocytosed corneal endothelial cells to Descemet’s membrane. Exp Eye Res 76:745–751PubMedGoogle Scholar
  82. 82.
    Koizumi N, Sakamoto Y, Okumura N et al (2008) Cultivated corneal endothelial transplantation in a primate: possible future clinical application in corneal endothelial regenerative medicine. Cornea 27(Suppl 1):S48–S55PubMedGoogle Scholar
  83. 83.
    Bostan C, Theriault M, Forget KJ et al (2016) In vivo functionality of a corneal endothelium transplanted by cell-injection therapy in a feline model. Invest Ophthalmol Vis Sci 57:1620–1634PubMedPubMedCentralGoogle Scholar
  84. 84.
    Bayyoud T, Thaler S, Hofmann J et al (2012) Decellularized bovine corneal posterior lamellae as carrier matrix for cultivated human corneal endothelial cells. Curr Eye Res 37:179–186PubMedGoogle Scholar
  85. 85.
    Yoshida J, Oshikata-Miyazaki A, Yokoo S et al (2014) Development and evaluation of porcine atelocollagen vitrigel membrane with a spherical curve and transplantable artificial corneal endothelial grafts. Invest Ophthalmol Vis Sci 55:4975–4981PubMedGoogle Scholar
  86. 86.
    Fan T, Ma X, Zhao J et al (2013) Transplantation of tissue-engineered human corneal endothelium in cat models. Mol Vis 19:400–407PubMedPubMedCentralGoogle Scholar
  87. 87.
    Yoeruek E, Bayyoud T, Maurus C et al (2012) Decellularization of porcine corneas and repopulation with human corneal cells for tissue-engineered xenografts. Acta Ophthalmol 90:e125–e131PubMedGoogle Scholar
  88. 88.
    Ozcelik B, Brown KD, Blencowe A et al (2014) Biodegradable and biocompatible poly(ethylene glycol)-based hydrogel films for the regeneration of corneal endothelium. Adv Healthc Mater 3:1496–1507PubMedGoogle Scholar
  89. 89.
    Young TH, Wang IJ, Hu FR et al (2014) Fabrication of a bioengineered corneal endothelial cell sheet using chitosan/polycaprolactone blend membranes. Colloids Surf B Biointerfaces 116:403–410PubMedGoogle Scholar
  90. 90.
    Kimoto M, Shima N, Yamaguchi M et al (2014) Development of a bioengineered corneal endothelial cell sheet to fit the corneal curvature. Invest Ophthalmol Vis Sci 55:2337–2343PubMedGoogle Scholar
  91. 91.
    Salehi S, Grunert AK, Bahners T et al (2014) New nanofibrous scaffold for corneal tissue engineering. Klin Monbl Augenheilkd 231:626–630PubMedGoogle Scholar
  92. 92.
    Palchesko RN, Lathrop KL, Funderburgh JL et al (2015) In vitro expansion of corneal endothelial cells on biomimetic substrates. Sci Rep 5:7955PubMedPubMedCentralGoogle Scholar
  93. 93.
    Muhammad R, Peh GS, Adnan K et al (2015) Micro- and nano-topography to enhance proliferation and sustain functional markers of donor-derived primary human corneal endothelial cells. Acta Biomater 19:138–148PubMedGoogle Scholar
  94. 94.
    Gao X, Liu W, Han B et al (2008) Preparation and properties of a chitosan-based carrier of corneal endothelial cells. J Mater Sci Mater Med 19:3611–3619PubMedGoogle Scholar
  95. 95.
    Raviola G (1982) Schwalbe line’s cells: a new cell type in the trabecular meshwork of Macaca mulatta. Invest Ophthalmol Vis Sci 22:45–56PubMedGoogle Scholar
  96. 96.
    Hirata-Tominaga K, Nakamura T, Okumura N et al (2013) Corneal endothelial cell fate is maintained by LGR5 through the regulation of hedgehog and Wnt pathway. Stem Cells 31:1396–1407PubMedGoogle Scholar
  97. 97.
    Dirisamer M, Yeh RY, Van Dijk K et al (2012) Recipient endothelium may relate to corneal clearance in descemet membrane endothelial transfer. Am J Ophthalmol 154:290–296e1PubMedGoogle Scholar
  98. 98.
    Bleyen I, Saelens IE, Van Dooren BT et al (2013) Spontaneous corneal clearing after Descemet’s stripping. Ophthalmology 120:215PubMedGoogle Scholar
  99. 99.
    Koizumi N, Okumura N, Ueno M et al (2014) New therapeutic modality for corneal endothelial disease using Rho-associated kinase inhibitor eye drops. Cornea 33(Suppl 11):S25–S31PubMedGoogle Scholar
  100. 100.
    Zhang K, Pang K, Wu X (2014) Isolation and transplantation of corneal endothelial cell-like cells derived from in-vitro-differentiated human embryonic stem cells. Stem Cells Dev 23:1340–1354PubMedPubMedCentralGoogle Scholar
  101. 101.
    Lo B, Parham L (2009) Ethical issues in stem cell research. Endocr Rev 30:204–213PubMedPubMedCentralGoogle Scholar
  102. 102.
    Wu J, Izpisua Belmonte JC (2015) Dynamic pluripotent stem cell states and their applications. Cell Stem Cell 17:509–525PubMedGoogle Scholar
  103. 103.
    Hatou S, Yoshida S, Higa K et al (2013) Functional corneal endothelium derived from corneal stroma stem cells of neural crest origin by retinoic acid and Wnt/beta-catenin signaling. Stem Cells Dev 22:828–839PubMedGoogle Scholar
  104. 104.
    Inagaki E, Hatou S, Higa K et al (2015) Functional analysis of tissue engineered corneal endothelium from human skin derived precursors. Invest Ophthalmol Vis Sci 56:3450–3450Google Scholar
  105. 105.
    Hatou S, Yoshida S, Higa K et al (2013) Corneal endothelial cells derived from monkey iPS cells: a short term evaluation. Invest Ophthalmol Vis Sci 54:1015–1015Google Scholar

Copyright information

© Springer Medizin Verlag GmbH 2017

Authors and Affiliations

  • M. Fuest
    • 1
    • 2
  • G. Hin-Fai Yam
    • 2
    • 3
  • G. Swee-Lim Peh
    • 2
    • 3
  • P. Walter
    • 1
  • N. Plange
    • 1
  • J. S. Mehta
    • 2
    • 3
    • 4
    • 5
  1. 1.Klinik für AugenheilkundeUniklinik RWTH AachenAachenDeutschland
  2. 2.Tissue Engineering and Stem Cell GroupSingapore Eye Research InstituteSingapurSingapur
  3. 3.Eye-ACP, Duke-NUS Graduate Medical SchoolSingapurSingapur
  4. 4.Singapore National Eye CentreSingapurSingapur
  5. 5.School of Material Science and EngineeringNanyang Technological UniversitySingapurSingapur

Personalised recommendations