Advertisement

Der Ophthalmologe

, Volume 114, Issue 3, pp 198–205 | Cite as

Technische Grundlagen adaptiver Optiken in der Ophthalmologie

  • J. L. ReinigerEmail author
  • N. Domdei
  • F. G. Holz
  • W. M. Harmening
Leitthema

Zusammenfassung

In den letzten 25 Jahren wurde die ophthalmologische Bildgebung revolutioniert. Dieser Review gibt einen Überblick über die Möglichkeiten adaptiver Optiken (AO) für ophthalmologische Bildgebungstechnologien und deren Entwicklung. Wir zeigen, dass die Rolle von ophthalmologischer Bildgebung sich von der Dokumentation von makroskopischen Veränderungen der Netzhaut hin zur Detektion mikroskopischer Auffälligkeiten entwickelt hat, wodurch frühzeitigere und präzisere Diagnosen ermöglicht werden. Die Implementierung von AO in bildgebende Systeme wie Funduskameras, Scanning-Laser-Ophthalmoskope und optische Kohärenztomographen spielt eine immer größere Rolle. Seit einigen Jahren entwickeln verschiedene Firmen auch kommerziell erhältliche AO-Systeme, was deren zukünftigen Einzug in die klinische Routine zeigt.

Schlüsselwörter

Bildgebung Fundusfotografie Scanning-Laser-Ophthalmoskopie Optische Kohärenztomographie Auflösung 

Technical principles of adaptive optics in ophthalmology

Abstract

During the last 25 years ophthalmic imaging has undergone a revolution. This review gives an overview of the possibilities of adaptive optics (AO) for ophthalmic imaging technologies and their development and illustrates that the role of ophthalmic imaging changed from the documentation of obvious abnormalities to the detection of microscopic yet significant conspicuities. This enables earlier and more precise diagnoses. The implementation of AO for imaging systems like fundus cameras, scanning laser ophthalmoscopy and optical coherence tomography has gained in importance. In recent years a couple of companies started developing commercially available AO systems, thus, indicating a future use in clinical routine.

Keywords

Imaging Fundus photography Scanning laser ophthalmoscopy Optical coherence tomography Resolution 

Notes

Danksagung

Wir danken Rigmor C. Baraas (University College of Southeast Norway, Kongsberg, Norwegen), Gereon Hüttmann (Institut für Biomedizinische Optik, Lübeck, Deutschland), Marco Lombardo (Vision Engineering Italy srl, Rom, Italien), Donald T. Miller (School of Optometry, Bloomington, IN, USA) und Austin Roorda (University of California, Berkeley, CA, USA), sowie den Firmen Boston Micromachines (Cambridge, MA, USA) und Imagine Eyes (Orsay, Frankreich) für das unkomplizierte und kurzfristige Zurverfügungstellen von Bild- und Informationsmaterial.

Förderung

Emmy Noether Programm der Deutschen Forschungsgemeinschaft (Ha 5323/5-1), Carl Zeiss Wissenschaftsfonds.

Einhaltung ethischer Richtlinien

Interessenkonflikt

J.L. Reiniger, N. Domdei, F.G. Holz und W.M. Harmening geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Booth MJ (2007) Adaptive optics in microscopy. Philos Trans A Math Phys Eng Sci 365:2829–2843CrossRefPubMedGoogle Scholar
  2. 2.
    Boston Micromachines Corporation (2016) Retinal Imaging Systems. http://www.bostonmicromachines.com/retinal-imaging-systems.html. Zugegriffen: 07. September 2016Google Scholar
  3. 3.
    Bruce KS, Harmening WM, Langston BR et al (2015) Normal perceptual sensitivity arising from weakly reflective cone Photoreceptors. Invest Ophthalmol Vis Sci 56:4431–4438CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Canon Inc (2016) Adaptive Optics Scanning Laser Ophthalmoscope. http://www.canon.com/technology/approach/special/md_image.html. Zugegriffen: 30. August 2016Google Scholar
  5. 5.
    Corle TR, Kino GS (1996) Confocal scanning optical microscopy and related imaging systems. Academic Press, San Diego LondonGoogle Scholar
  6. 6.
    Díaz-Doutón F, Pujol J, Arjona M, Luque SO (2006) Curvature sensor for ocular wavefront measurement. Opt Lett 31:2245–2247CrossRefPubMedGoogle Scholar
  7. 7.
    Domdei N, Reiniger JL, Pfau M et al (2016) Histologie im lebenden Auge: nichtinvasive mikroskopische Struktur- und Funktionsanalyse der Netzhaut mit adaptiven Optiken. Ophtalmologe. doi: 10.1007/s00347-016-0411-9
  8. 8.
    Dreher AW, Bille JF, Weinreb RN (1989) Active optical depth resolution improvement of the laser tomographic scanner. Appl Opt 28:804–808CrossRefPubMedGoogle Scholar
  9. 9.
    Fienup JR, Miller JJ (2003) Aberration correction by maximizing generalized sharpness metrics. J Opt Soc Am A Opt Image Sci Vis 20:609–620CrossRefPubMedGoogle Scholar
  10. 10.
    Hardy JW, Lefebvre JE, Koliopoulos CL (1977) Real-time atmospheric compensation. J Opt Soc Am 67:360–369CrossRefGoogle Scholar
  11. 11.
    Harmening WM, Tuten WS, Roorda A, Sincich LC (2014) Mapping the perceptual grain of the human retina. J Neurosci 34:5667–5677CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hermann B, Fernández EJ, Unterhuber A et al (2004) Adaptive-optics ultrahigh-resolution optical coherence tomography. Opt Lett 29:2142–2144CrossRefPubMedGoogle Scholar
  13. 13.
    Hillmann D, Spahr H, Hain C et al (2016) Aberration-free volumetric high-speed imaging of in vivo retina. Sci Rep 6:35209CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hillmann D, Spahr H, Pfäffle C et al (2016) In vivo optical imaging of physiological responses to photostimulation in human photoreceptors. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1606428113 PubMedCentralGoogle Scholar
  15. 15.
    Hippler S, Kasper M (2004) Dem Seeing ein Schnippchen schlagen: Adaptive Optik in der Astronomie, Teil I. Sterne Weltraum 43:32–42Google Scholar
  16. 16.
    Hofer H, Sredar N, Queener H et al (2011) Wavefront sensorless adaptive optics ophthalmoscopy in the human eye. Opt Express 19:14160CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hofer H, Artal P, Singer B et al (2001) Dynamics of the eye’s wave aberration. J Opt Soc Am A Opt Image Sci Vis 18:497–506CrossRefPubMedGoogle Scholar
  18. 18.
    Huang D, Swanson EA, Lin CP et al (1991) Optical coherence tomography. Science 254:1178–1181CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Iglesias I, Ragazzoni R, Julien Y, Artal P (2002) Extended source pyramid wave-front sensor for the human eye. Opt Express 10:419–428CrossRefPubMedGoogle Scholar
  20. 20.
    Imagine Eyes (2012) rtx1TM Adaptive Optics Retinal Camera. http://www.imagine-eyes.com/product/rtx1/. Zugegriffen: 09. September 2016Google Scholar
  21. 21.
    Jagger WS (1985) Visibility of photoreceptors in the intact living cane toad eye. Vision Res 25:729–731CrossRefPubMedGoogle Scholar
  22. 22.
    Jian Y, Lee S, Ju MJ et al (2016) Lens-based wavefront sensorless adaptive optics swept source OCT. Sci Rep 6:27620CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Jonnal RS, Kocaoglu OP, Zawadzki RJ et al (2016) A review of adaptive optics optical coherence tomography: technical advances, scientific applications, and the future. Invest Ophthalmol Vis Sci 57:OCT51–68CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Land MF, Snyder AW (1985) Cone mosaic observed directly through natural pupil of live vertebrate. Vision Res 25:1519–1522CrossRefPubMedGoogle Scholar
  25. 25.
    Liang J, Grimm B, Goelz S, Bille JF (1994) Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor. J Opt Soc Am A Opt Image Sci Vis 11:1949–1957CrossRefPubMedGoogle Scholar
  26. 26.
    Liang J, Williams DR, Miller DT (1997) Supernormal vision and high-resolution retinal imaging through adaptive optics. J Opt Soc Am A Opt Image Sci Vis 14:2884–2892CrossRefPubMedGoogle Scholar
  27. 27.
    Liu Z, Kocaoglu OP, Miller DT (2016) 3D imaging of retinal pigment epithelial cells in the living human retina. Invest Ophthalmol Vis Sci 57:OCT533–543CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Merino D, Loza-Alvarez P (2016) Adaptive optics scanning laser ophthalmoscope imaging: technology update. Clin Ophthalmol 10:743–755CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Miller DT, Kocaoglu OP, Wang Q, Lee S (2011) Adaptive optics and the eye (super resolution OCT). Eye (Lond) 25:321–330CrossRefGoogle Scholar
  30. 30.
    Miller DT, Williams DR, Morris GM, Liang J (1996) Images of cone photoreceptors in the living human eye. Vision Res 36:1067–1079CrossRefPubMedGoogle Scholar
  31. 31.
    Mu Q, Cao Z, Li D et al (2007) Liquid Crystal based adaptive optics system to compensate both low and high order aberrations in a model eye. Opt Express 15:1946–1953CrossRefPubMedGoogle Scholar
  32. 32.
    Physical Sciences Inc (2016) Compact Adaptive Optics Retinal Imager (CAORI). http://www.psicorp.com/products/laser-based-sensors/compact-adaptive-optics-retinal-imager-caori. Zugegriffen: 07. September 2016Google Scholar
  33. 33.
    Pircher M, Baumann B, Götzinger E, Hitzenberger CK (2006) Retinal cone mosaic imaged with transverse scanning optical coherence tomography. Opt Lett 31:1821–1823CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Rha J, Jonnal RS, Thorn KE et al (2006) Adaptive optics flood-illumination camera for high speed retinal imaging. Opt Express 14:4552–4569CrossRefPubMedGoogle Scholar
  35. 35.
    Roorda A (2011) Adaptive optics for studying visual function: a comprehensive review. J Vis 11:1–21CrossRefGoogle Scholar
  36. 36.
    Roorda A, Romero-Borja F, Donnelly Iii W et al (2002) Adaptive optics scanning laser ophthalmoscopy. Opt Express 10:405–412CrossRefPubMedGoogle Scholar
  37. 37.
    Salas M, Drexler W, Levecq X et al (2016) Multi-modal adaptive optics system including fundus photography and optical coherence tomography for the clinical setting. Biomed Opt Express 7:1783–1796CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Scoles D, Sulai YN, Dubra A (2013) In vivo dark-field imaging of the retinal pigment epithelium cell mosaic. Biomed Opt Express 4:1710–1723CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Scoles D, Sulai YN, Langlo CS et al (2014) In vivo imaging of human cone photoreceptor inner segments. Invest Ophthalmol Vis Sci 55:4244–4251CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Tuten WS, Tiruveedhula P, Roorda A (2012) Adaptive optics scanning laser ophthalmoscope-based microperimetry. Optom Vis Sci 89:563–574CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wade AR, Fitzke FW (1998) In vivo imaging of the human cone-photoreceptor mosaic using a confocal LSO. Lasers Light. Ophthalmology 8:129–136Google Scholar
  42. 42.
    Webb RH, Hughes GW (1981) Scanning laser ophthalmoscope. IEEE Trans Biomed Eng 28:488–492CrossRefPubMedGoogle Scholar
  43. 43.
    Webb RH, Hughes GW, Delori FC (1987) Confocal scanning laser ophthalmoscope. Appl Opt 26:1492–1499CrossRefPubMedGoogle Scholar
  44. 44.
    Wong KSK, Jian Y, Cua M et al (2015) In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography. Biomed Opt Express 6:580–590CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Zhang J, Yang Q, Saito K et al (2015) An adaptive optics imaging system designed for clinical use. Biomed Opt Express 6:2120–2137CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag Berlin 2017

Authors and Affiliations

  • J. L. Reiniger
    • 1
    Email author
  • N. Domdei
    • 1
    • 2
  • F. G. Holz
    • 1
  • W. M. Harmening
    • 1
  1. 1.Universitäts-Augenklinik BonnBonnDeutschland
  2. 2.Institut für Zoologie und TierphysiologieRWTH AachenAachenDeutschland

Personalised recommendations