Der Ophthalmologe

, Volume 109, Issue 4, pp 358–363 | Cite as

Elektrophysiologische Untersuchungsmethoden in der Glaukomdiagnostik

Leitthema

Zusammenfassung

Für die Glaukomfrühdiagnostik sind derzeit 2 elektrophysiologische Methoden am vielversprechendsten: 1) Mit dem Pattern-ERG (PERG) können Augen mit einer okulären Hypertension 4 Jahre vor Auftreten einer Konversion mit Manifestation eines Gesichtsfelddefekts mit einer Sensitivität und Spezifität von ca. 75% identifiziert werden. Hierzu müssen der verwendete Reiz und das Auswerteprotokoll optimal angepasst sein (Verwendung bestimmter Karogrößen und Reizfrequenzen sowie Auswertung von Amplitudenverhältnissen auf verschiedene Karogrößen). Das PERG kann allerdings nur bei Patienten mit einem bestkorrigierten Visus ≥ 0,8 ohne wesentliche Medientrübungen reliabel verwendet werden, um falsch positive Ergebnisse zu vermeiden. 2) Die sog. „photopic negative response“, eine Komponente des Ganzfeld-ERGs, ist zwar etwas einfacher abzuleiten als das PERG und ist von optisch bedingten Visusreduktionen unbeeinträchtigt, jedoch ist sie nach bisherigen Ergebnissen dem PERG bezüglich der Glaukomfrühdiagnostik etwas unterlegen.

Schlüsselwörter

Glaukom Elektroretinogramm (ERG) „Photopic negative response“ (PhNR) Visuell evoziertes Potenzial (VEP) Elektrophysiologie 

Electrophysiological examination methods in glaucoma diagnostics

Abstract

The two currently used most successful techniques for early detection of glaucoma are described. (1) The pattern electroretinogram (PERG) allows detection of incipient glaucomatous damage in eyes with ocular hypertension up to 4 years ahead of manifest glaucoma with a sensitivity and specificity of approximately 75%. This is achieved by selecting optimized stimulation (check size and stimulation frequency) and analysis protocols (amplitude ratio to different check sizes). The major disadvantage is the requirement for best corrected visual acuity to be at least 0.8(decimal) to avoid false positive results. (2) The photopic negative response (PhNR), a component of the Ganzfeld ERG, does not suffer from optical factors reducing visual acuity. It is also affected in early glaucoma but so far has not achieved the same sensitivity and specificity as the PERG.

Keywords

Glaucoma Electroretinogram (ERG) Photopic negative response (PhNR) Visual evoked potential (VEP) Electrophysiology 

Literatur

  1. 1.
    Kass MA, Heuer DK, Higginbotham EJ (2002) The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 120:701–713; discussion 829–730PubMedGoogle Scholar
  2. 2.
    Quigley HA, Dunkelberger GR, Green WR (1988) Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 107:453–464Google Scholar
  3. 3.
    Hood DC (2003) Objective measurement of visual function in glaucoma. Curr Opin Ophthalmol 14:78–82PubMedCrossRefGoogle Scholar
  4. 4.
    Korth MJ, Junemann AM, Horn FK et al (2000) Synopsis of various electrophysiological tests in early glaucoma diagnosis – temporal and spatiotemporal contrast sensitivity, light- and color-contrast pattern-reversal electroretinogram, blue-yellow VEP. Klin Monatsbl Augenheilkd 216:360–368PubMedCrossRefGoogle Scholar
  5. 5.
    Gouras P (2003) The role of S-cones in human vision. Doc Ophthalmol 106:5–11PubMedCrossRefGoogle Scholar
  6. 6.
    Horn FK, Jonas JB, Budde WM et al (2002) Monitoring glaucoma progression with visual evoked potentials of the blue-sensitive pathway. Invest Ophthalmol Vis Sci 43:1828–1834PubMedGoogle Scholar
  7. 7.
    Goldberg I, Graham SL, Klistorner AI (2002) Multifocal objective perimetry in the detection of glaucomatous field loss. Am J Ophthalmol 133:29–39PubMedCrossRefGoogle Scholar
  8. 8.
    Hood DC, Thienprasiddhi P, Greenstein VC et al (2004) Detecting early to mild glaucomatous damage: a comparison of the multifocal VEP and automated perimetry. Invest Ophthalmol Vis Sci 45: 492–498PubMedCrossRefGoogle Scholar
  9. 9.
    Hood DC, Greenstein VC (2003) Multifocal VEP and ganglion cell damage: applications and limitations for the study of glaucoma. Prog Retin Eye Res 22:201–251PubMedCrossRefGoogle Scholar
  10. 10.
    Fortune B, Demirel S, Zhang X et al (2007) Comparing multifocal VEP and standard automated perimetry in high-risk ocular hypertension and early glaucoma. Invest Ophthalmol Vis Sci 48:1173–1180PubMedCrossRefGoogle Scholar
  11. 11.
    Johnson MA, Drum BA, Quigley HA et al (1989) Pattern-evoked potentials and optic nerve fiber loss in monocular laser-induced glaucoma. Invest Ophthalmol Vis Sci 30:897–907PubMedGoogle Scholar
  12. 12.
    Poloschek CM, Sutter EE (2002) The fine structure of multifocal ERG topographies. J Vis 2:577–587PubMedCrossRefGoogle Scholar
  13. 13.
    Poloschek CM, Bach M (2009) The mfERG response topography with scaled stimuli: effect of the stretch factor. Doc Ophthalmol 119:51–58PubMedCrossRefGoogle Scholar
  14. 14.
    Holder GE (2001) Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog Retin Eye Res 20:531–561PubMedCrossRefGoogle Scholar
  15. 15.
    Bach M, Hoffmann MB (2006) The origin of the pattern electroretinogram (PERG). In: Heckenlively J, Arden G (Hrsg) Principles and practice of clinical electrophysiology of vision. MIT Press, Cambridge London, S 185–196Google Scholar
  16. 16.
    Holder GE, Brigell MG, Hawlina M et al (2007) ISCEV standard for clinical pattern electroretinography – 2007 update. Doc Ophthalmol 114:111–116PubMedCrossRefGoogle Scholar
  17. 17.
    Dawson WW, Trick GL, Litzkow CA (1979) Improved electrode for electroretinography. Invest Ophthalmol Vis Sci 18:988–991PubMedGoogle Scholar
  18. 18.
    Bach M (1998) Preparation and Montage of DTL-Electrodes. http://www.uniklinik-freiburg.de/augenklinik/live/homede/mit/bach/ops/dtl_en.html (Zugegriffen: 02.01.2012)Google Scholar
  19. 19.
    Hawlina M, Konec B (1992) New noncorneal HK-loop electrode for clinical electroretinography. Doc Ophthalmol 81:253–259PubMedCrossRefGoogle Scholar
  20. 20.
    Hess RF, Baker CL (1984) Human pattern-evoked electroretinogram. J Neurophysiol 51:939–951PubMedGoogle Scholar
  21. 21.
    Thompson D, Drasdo N (1989) The effect of stimulus contrast on the latency and amplitude of the pattern electroretinogram. Vision Res 29:309–313PubMedCrossRefGoogle Scholar
  22. 22.
    Zapf HR, Bach M (1999) The contrast characteristic of the pattern electroretinogram depends on temporal frequency. Graefes Arch Clin Exp Ophthalmol 237:93–99PubMedCrossRefGoogle Scholar
  23. 23.
    Otto T, Bach M (1996) Retest variability and diurnal effects in the pattern electroretinogram. Documenta Ophthalmologica 92:311–323PubMedCrossRefGoogle Scholar
  24. 24.
    Bach M, Speidel-Fiaux A (1989) Pattern electroretinogram in glaucoma and ocular hypertension. Doc Ophthalmol 73:173–181PubMedCrossRefGoogle Scholar
  25. 25.
    Trick GL (1985) Retinal potentials in patients with primary open-angle glaucoma: physiological evidence for temporal frequency tuning deficits. Invest Ophthalmol Vis Sci 26:1750–1758PubMedGoogle Scholar
  26. 26.
    Hiss P, Fahl G (1991) Veränderungen im Muster-Elektroretinogramm bei Glaukom und okulärer Hypertension sind reizfrequenzabhängig. Fortschr Ophthalmol 88:562–565PubMedGoogle Scholar
  27. 27.
    Bach M, Hiss P, Röver J (1988) Check-size specific changes of pattern electroretinogram in patients with early open-angle glaucoma. Doc Ophthalmol 69:315–322PubMedCrossRefGoogle Scholar
  28. 28.
    Zrenner E, Ziegler R, Voss B (1988) Clinical applications of pattern electroretinography: melanoma, retinal detachment and glaucoma. Doc Ophthalmol 68:283–292PubMedCrossRefGoogle Scholar
  29. 29.
    Bach M, Pfeiffer N, Birkner-Binder D (1992) Pattern-Electroretinogram reflects diffuse retinal damage in early glaucoma. Clin Vision Sci 7:335–340Google Scholar
  30. 30.
    Bach M, Unsoeld AS, Philippin H et al (2006) Pattern ERG as an early glaucoma indicator in ocular hypertension: a long-term, prospective study. Invest Ophthalmol Vis Sci 47:4881–4887PubMedCrossRefGoogle Scholar
  31. 31.
    Bach M (2001) Electrophysiological approaches for early detection of glaucoma. Eur J Ophthalmol 11(Suppl 2):S41–S49PubMedGoogle Scholar
  32. 32.
    Ventura LM, Porciatti V, Ishida K et al (2005) Pattern electroretinogram abnormality and glaucoma. Ophthalmology 112:10–19PubMedCrossRefGoogle Scholar
  33. 33.
    Yang A, Swanson WH (2007) A new pattern electroretinogram paradigm evaluated in terms of user friendliness and agreement with perimetry. Ophthalmology 114:671–679PubMedCrossRefGoogle Scholar
  34. 34.
    Berg TJ van den, Boltjes B (1987) The point-spread function of the eye from 0 degrees to 100 degrees and the pattern electroretinogram. Doc Ophthalmol 67:347–354PubMedCrossRefGoogle Scholar
  35. 35.
    Leipert KP, Gottlob I (1987) Pattern electroretinogram: effects of miosis, accommodation, and defocus. Doc Ophthalmol 67:335–346PubMedCrossRefGoogle Scholar
  36. 36.
    Ver Hoeve JN, Danilov YP, Kim CB, Spear PD (1999) VEP and PERG acuity in anesthetized young adult rhesus monkeys. Vis Neurosci 16:607–617Google Scholar
  37. 37.
    Bach M, Mathieu M (2004) Different effect of dioptric defocus vs. light scatter on the pattern electroretinogram (PERG). Doc Ophthalmol 108:99–106PubMedCrossRefGoogle Scholar
  38. 38.
    Bach M (2007) The Freiburg Visual Acuity Test-Variability unchanged by post-hoc re-analysis. Graefes Arch Clin Exp Ophthalmol 245:965–971PubMedCrossRefGoogle Scholar
  39. 39.
    Bode SF, Jehle T, Bach M (2011) Pattern electroretinogram (PERG) in glaucoma suspects – new findings from a longitudinal study. Invest Ophthalmol Vis Sci 52:4300–4306PubMedCrossRefGoogle Scholar
  40. 40.
    Frishman LJ, Shen FF, Du L et al (1996) The scotopic electroretinogram of macaque after retinal ganglion cell loss from experimental glaucoma. Invest Ophthalmol Vis Sci 37:125–141PubMedGoogle Scholar
  41. 41.
    Viswanathan S, Frishman LJ, Robson JG (2000) The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Invest Ophthalmol Vis Sci 41:2797–2810PubMedGoogle Scholar
  42. 42.
    Viswanathan S, Frishman LJ, Robson JG, Walters JW (2001) The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Invest Ophthalmol Vis Sci 42:514–522PubMedGoogle Scholar
  43. 43.
    Wakili N, Horn FK, Junemann AG et al (2008) The photopic negative response of the blue-on-yellow flash-electroretinogram in glaucomas and normal subjects. Doc Ophthalmol 117:147–154PubMedCrossRefGoogle Scholar
  44. 44.
    North RV, Jones AL, Drasdo N et al (2010) Electrophysiological evidence of early functional damage in glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci 51:1216–1222PubMedCrossRefGoogle Scholar
  45. 45.
    Bach M, Preiser D, Poloschek CM (2010) Comparison of pattern-ERG (PERG) and photopic negative response (PhNR) in glaucoma suggests differential damage mechanisms. ARVO. http://www.arvo.org, Fort Lauderdale, S 345 (#5793)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Universitäts-Augenklinik FreiburgFreiburgDeutschland

Personalised recommendations