Advertisement

Der Ophthalmologe

, Volume 109, Issue 8, pp 758–765 | Cite as

Spectral-Domain-optische-Kohärenztomographie in der Behandlung der myopen choroidalen Neovaskularisationsmembran

  • M.D. Fischer
  • W. Inhoffen
  • F. Ziemssen
Leitthema

Zusammenfassung

Die SD-OCT (Spectral-Domain-optische-Kohärenztomographie)-Untersuchung liefert wichtige Zusatzinformationen über die morphologischen Begleitveränderungen einer myopen choroidalen Neovaskularisationsmembran (mCNV). Reproduzierbare Messungen intra- und subretinaler Flüssigkeit nehmen in der Verlaufsbeurteilung einen wichtigen Stellenwert ein und erlauben es, nach individueller Abwägung auf häufige Fluoreszenzangiographien zu verzichten. Für die Aufnahme ist eine Anpassung des Referenzarms sinnvoll. Ein Hersteller hat die automatische Umrechnung der transversalen Messgrößen nach der jeweils eingestellten Fokusebene (Achslänge) implementiert. Spiegelartefakte und eine zu starke Kurvatur lassen sich durch die Verkleinerung des OCT (optische Kohärenztomographie)-Schnitts (15°) vermeiden. Die Darstellung der Choriocapillaris und Aderhaut hat das Verständnis der möglichen Pathogenese erweitert.

Schlüsselwörter

Myopie Choroidale Neovaskularisationsmembran Spectral-Domain-optische-Kohärenztomographie Skalierung Kurvatur 

Spectral domain optical coherence tomography in the treatment of myopic choroidal neovascularization

Abstract

Spectral domain optical coherence tomography (SD-OCT) investigations provide additional information about the morphological characteristics of myopic choroidal neovascularization (mCNV). Reproducible measurements of intraretinal and subretinal fluid are of growing importance for an evaluation of progression. The non-invasive technique reduces the need for frequent fluorescence angiography after individual assessment. Appropriate correction of the reference arm is mandatory. Automatic adjustment of transversal measured values due to alterations in the paraxial field (depending on the axial length) has been implemented in a new device. Mirror artefacts and excess curvature can be avoided by reducing the length of the OCT cross-section (15°). New possibilities to record the choriocapillaris and choroid have expanded the knowledge of potential pathomechanisms and risk factors.

Keywords

Myopia Choroidal neovascularization Spectral domain optical coherence tomography Scaling Curvature 

Notes

Interessenkonflikt

Der korrespondierende Autor weist für sich und seine Koautoren auf folgende Beziehungen hin: M. Dominik Fischer hat ein Referentenhonorar von Heidelberg Engineering erhalten. Werner Inhoffen hat Referentenhonorare von Novartis und Allergan erhalten. Focke Ziemssen hat Honorare und Reisekosten von Alimera, Allergan, Bayer Healthcare, GSK, Heidelberg Engineering, Novartis und Pfizer erhalten. Trotz eines möglichen Interessenkonflikts bemüht sich der Beitrag um eine unabhängige und neutrale Bewertung.

Literatur

  1. 1.
    Baba T, Ohno-Matsui K, Yoshida T et al (2002) Optical coherence tomography of choroidal neovascularization in high myopia. Acta Ophthalmol Scand 80:82–87PubMedCrossRefGoogle Scholar
  2. 2.
    Bennett AG, Rudnicka AR, Edgar DF (1994) Improvements on Littmann’s method of determining the size of retinal features by fundus photography. Graefes Arch Clin Exp Ophthalmol 232:361–367PubMedCrossRefGoogle Scholar
  3. 3.
    Coletta NJ (2011) Retinal thickness in myopia after adjustment for axial length variation. Invest Ophthalmol Vis Sci: ARVO E-Abstract A457Google Scholar
  4. 4.
    DOG, Retinologische Gesellschaft, BVA (2012) Stellungnahme von DOG, Retinologischer Gesellschaft und BVA zu therapeutischen Strategien in der Anti-VEGF-Therapie bei der neovaskulären altersabhängigen Makuladegeneration. http://www.dog.org/wp-content/uploads/2009/08/Stellungnahme-Anti-VEGF-Therapie-bei-der-neovaskul%C3%A4ren-Therapeutische-Strategie-Febr-2012-final.pdfGoogle Scholar
  5. 5.
    DOG, Retinologische Gesellschaft, BVA (2011) Stellungnahme von DOG, Retinologischer Gesellschaft und BVA zur Therapie der chorioidalen Neovaskularisation bei Myopie. http://www.dog.org/wp-content/uploads/2009/08/Stellungnahme-myope-CNV-22-08-20111.pdfGoogle Scholar
  6. 6.
    Framme C, Panagakis G, Birngruber R (2010) Effects on choroidal neovascularization after anti-VEGF Upload using intravitreal ranibizumab, as determined by spectral domain-optical coherence tomography. Invest Ophthalmol Vis Sci 51:1671–1676PubMedCrossRefGoogle Scholar
  7. 7.
    Fujiwara T, Imamura Y, Margolis R et al (2009) Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol 148:445–450PubMedCrossRefGoogle Scholar
  8. 8.
    Garway-Heath DF, Rudnicka AR, Lowe T et al (1998) Measurement of optic disc size: equivalence of methods to correct for ocular magnification. Br J Ophthalmol 82:643–649PubMedCrossRefGoogle Scholar
  9. 9.
    Giani A, Esmaili DD, Luiselli C et al (2011) Displayed reflectivity of choroidal neovascular membranes by optical coherence tomography correlates with presence of leakage by fluorescein angiography. Retina 31:942–948PubMedCrossRefGoogle Scholar
  10. 10.
    Giani A, Luiselli C, Esmaili DD et al (2011) Spectral-domain optical coherence tomography as an indicator of fluorescein angiography leakage from choroidal neovascularization. Invest Ophthalmol Vis Sci 52:5579–5586PubMedCrossRefGoogle Scholar
  11. 11.
    Grossniklaus HE, Green WR (1992) Pathologic findings in pathologic myopia. Retina 12:127–133PubMedCrossRefGoogle Scholar
  12. 12.
    Henschel A, Spital G, Lommatzsch A et al (2009) Optical coherence tomography in neovascular age related macular degeneration compared to fluorescein angiography and visual acuity. Eur J Ophthalmol 19:831–835PubMedGoogle Scholar
  13. 13.
    Ho J, Castro DP, Castro LC et al (2010) Clinical assessment of mirror artifacts in spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 51:3714–3720PubMedCrossRefGoogle Scholar
  14. 14.
    Ikuno Y, Jo Y, Hamasaki T et al (2010) Ocular risk factors for choroidal neovascularization in pathologic myopia. Invest Ophthalmol Vis Sci 51:3721–3725PubMedCrossRefGoogle Scholar
  15. 15.
    Ikuno Y, Tano Y (2009) Retinal and choroidal biometry in highly myopic eyes with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 50:3876–3880PubMedCrossRefGoogle Scholar
  16. 16.
    Keane PA, Liakopoulos S, Chang KT et al (2008) Comparison of the optical coherence tomographic features of choroidal neovascular membranes in pathological myopia versus age-related macular degeneration, using quantitative subanalysis. Br J Ophthalmol 92:1081–1085PubMedCrossRefGoogle Scholar
  17. 17.
    Khurana RN, Dupas B, Bressler NM (2010) Agreement of time-domain and spectral-domain optical coherence tomography with fluorescein leakage from choroidal neovascularization. Ophthalmology 117:1376–1380PubMedCrossRefGoogle Scholar
  18. 18.
    Moriyama M, Ohno-Matsui K, Futagami S et al (2007) Morphology and long-term changes of choroidal vascular structure in highly myopic eyes with and without posterior staphyloma. Ophthalmology 114:1755–1762PubMedCrossRefGoogle Scholar
  19. 19.
    Odell D, Dubis AM, Lever JF et al (2011) Assessing errors inherent in OCT-derived macular thickness maps. J Ophthalmol, DOI 10.1155/2011/692574Google Scholar
  20. 20.
    Rao HL, Kumar AU, Babu JG et al (2011) Predictors of normal optic nerve head, retinal nerve fiber layer, and macular parameters measured by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 52:1103–1110PubMedCrossRefGoogle Scholar
  21. 21.
    Sayanagi K, Sharma S, Yamamoto T et al (2009) Comparison of spectral-domain versus time-domain optical coherence tomography in management of age-related macular degeneration with ranibizumab. Ophthalmology 116:947–955PubMedCrossRefGoogle Scholar
  22. 22.
    Seko Y, Seko Y, Fujikura H et al (1999) Induction of vascular endothelial growth factor after application of mechanical stress to retinal pigment epithelium of the rat in vitro. Invest Ophthalmol Vis Sci 40:3287–3291PubMedGoogle Scholar
  23. 23.
    Shimada N, Ohno-Matsui K, Nishimuta A et al (2008) Detection of paravascular lamellar holes and other paravascular abnormalities by optical coherence tomography in eyes with high myopia. Ophthalmology 115:708–717PubMedCrossRefGoogle Scholar
  24. 24.
    Spaide RF, Koizumi H, Pozzoni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146:496–500PubMedCrossRefGoogle Scholar
  25. 25.
    Vanderbeek BL, Johnson MW (2012) The diversity of traction mechanisms in myopic traction maculopathy. Am J Ophthalmol 153:93–102PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department für AugenheilkundeUniversitäts-AugenklinikTübingenDeutschland

Personalised recommendations