Der Ophthalmologe

, Volume 108, Issue 10, pp 921–928 | Cite as

Verätzungen und Verbrennungen des Auges

Konservative und chirurgische Optionen einer stadiengerechten Therapie
Leitthema

Zusammenfassung

Es werden die Grundlagen der medizinischen Versorgung des dringlichen Notfalls Augenverätzung und -verbrennung besprochen. Das Konzept aller Maßnahmen in der Akutphase dient der Verhinderung oder Begrenzung der Gewebezerstörung. Das weitere therapeutische Vorgehen ist auf die Modulation der Entzündungsreaktion, das Abfangen einer bakteriellen Infektion bzw. möglicher Augendrucksteigerungen und auf die Förderung der Wundheilung ausgerichtet. Aus den dargelegten konservativen und chirurgischen Therapieoptionen ist anhand der Klassifikation des Schweregrades der Verätzung sowie einer sorgfältigen Identifizierung zerstörter Gewebestrukturen ein individuelles Maßnahmenkonzept umzusetzen. Bei schweren und schwersten Augenverätzungen gehört hierzu die umfassende chirurgische Sanierung. Die an der Behandlung der Augenverätzung und -verbrennung beteiligten ambulanten und stationären Einrichtungen benötigen ein einheitliches, wissenschaftlich begründetes Therapieregime. Insbesondere ist die lückenlose Fortführung der Behandlung zur Wiederherstellung der Sehkraft entscheidend.

Schlüsselwörter

Verätzung Verbrennung Auge Konservative Therapie Chirurgische Eingriffe 

Chemical and thermal eye burns

Conservatíve and surgical options of a stage-dependent therapy

Abstract

The basic principles of first aid for chemical and thermal burns are discussed. In the acute phase the primary goal of all measurements is the prevention or limitation of tissue destruction. The further therapeutic care is focused on the modulation of the inflammatory response, the prevention of a bacterial infection and secondary glaucoma and the stimulation of wound healing. The individual concept of measures to be taken is recruited from the careful identification of necrotic tissue, the eye burn classification of severity and on the basis of all described medical and surgical therapy options. In the case of severe and very severe ocular burns a comprehensive surgical reconstruction is included. All outpatient departments and eye clinics taking part on the treatment have to ensure a standardized complete and scientifically valid therapy regime to restore vision.

Keywords

Chemical eye burn Thermal eye burn Conservative treatment Surgical intervention 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Bacskulin J, Bacskulin E (1965) Further experiences with subconjunctival autohemotherapy in fresh and old corrosions. Am J Ophthal 59:674–680PubMedGoogle Scholar
  2. 2.
    Ban Y, Cooper LJ, Fullwood NJ et al (2003) Comparison of ultrastructure, tight junction-related protein expression and barrier function of human corneal epithelial cells cultivated on amniotic membrane with and without airlifting. Exp Eye Res 76:735–743PubMedCrossRefGoogle Scholar
  3. 3.
    Bernauer W et al (2006) Corneal calcification following intensified treatment with sodium hyaluronate artificial tears. Br J Ophthalmol 90:285–288PubMedCrossRefGoogle Scholar
  4. 4.
    Bernauer W, Thiel MA, Rentsch KM (2006) Phosphate in ophthalmologischen Präparaten. Ophthalmologe 103:416–417PubMedCrossRefGoogle Scholar
  5. 5.
    Böhmer JA, Sellhaus B, Schrage NF (2001) Effects of ascorbic acid on retinal pigment epithelial cells. Curr Eye Res 23:206–214PubMedCrossRefGoogle Scholar
  6. 6.
    Burns F, Stack M, Gray R et al (1989) Inhibition of purified collagenase from alkaliburned rabbit corneas. Invest Ophthalmol Vis Sci 30:1569–1575PubMedGoogle Scholar
  7. 7.
    Cejkova J (1997) Histochemical study of leukocyte elastase activity in alkali-burned rabbit cornea. Ophthalmic Res 29:154–160PubMedCrossRefGoogle Scholar
  8. 8.
    Cheng KC, Chang CH (2006) Modified gunderson conjunctival flap combined with an oral mucosal graft to treat an intractable corneal lysis after chemical burn: a case report. Kaohsiung J Med Sci 22:247–251PubMedCrossRefGoogle Scholar
  9. 9.
    Cheung PS, Hosseini K (2009) Anti-Inflammatory activity of Azithromycin as measured by its NF-kB inhibitory activity. ARVO, E-Abstract 839/A425Google Scholar
  10. 10.
    Dan L, Shi-long Y, Miao-li L et al (2008) Inhibitory effect of oral doxycycline on neovascularization in a rat corneal alkali burn model of angiogenesis. Curr Eye Res 33:653–660PubMedCrossRefGoogle Scholar
  11. 11.
    Davis AR, Ali QH, Aclimandos WA, Hunter PA (1997) Topical steroid use in the treatment of ocular alkali burns. Br J Ophthalmol 81:732–734PubMedCrossRefGoogle Scholar
  12. 12.
    DFG (2008) MAK-und BAT-Werte-Liste 2008. Mitteilung 44. WILEY-VCH & Co. KGaA, S 1–66, S 148Google Scholar
  13. 13.
    Dietrich T, Weisbach V, Seitz B et al (2008) Herstellung von Eigenserumaugentropfen zur ambulanten Therapie. Ophthalmologe 11:1036–1042CrossRefGoogle Scholar
  14. 14.
    Dua HS, Azuara-Blanco A (2000) Discussion on amniotic membrane transplantation for acute chemical or thermal burns. Ophthalmology 107:990CrossRefGoogle Scholar
  15. 15.
    Dua HS, Azuara-Blanco A (2000) Autologous limbal transplantation in patients with unilateral corneal stem cell deficiency. Br J Ophthalmol 84:273–278PubMedCrossRefGoogle Scholar
  16. 16.
    Dua HS, King AJ, Joseph A (2001) A new classification of ocular surface burns. Br J Ophthalmol 85:1379–1383PubMedCrossRefGoogle Scholar
  17. 17.
    Fatima A, Iftekhar G, Sangwan VS, Vemuganti GK (2008) Ocular surface changes in limbal stem cell deficiency caused by chemical injury: a histologic study of excised pannus from recipients of cultured corneal epithelium. Eye 22:1161–1167PubMedCrossRefGoogle Scholar
  18. 18.
    Feng Y, Feng Y, Zhu X et al (2004) Alkali burn causes aldehyde dehydrogenase 3A1 (ALDH 3A1) decrease in mouse cornea. Mol Vis 10:845–850PubMedGoogle Scholar
  19. 19.
    Fish R, Davidson RS (2010) Management of ocular thermal and chemical injuries, including amniotic membrane therapy. Curr Opin Ophthalmol 21:317–321PubMedGoogle Scholar
  20. 20.
    Fournier JH, McLachlan DL (2005) Ocular surface reconstruction using amniotic membrane allograft for severe surface disorders in chemical burns: case report and review of the literature. Int Surg 90:45–47PubMedGoogle Scholar
  21. 21.
    Franzco LWH, Summers PM, Franzca DG et al (2004) Controlled trial of hyperbaric oxygen treatment for alkali corneal burn in the rabbit. Clin Experiment Ophthalmol 32:67–70CrossRefGoogle Scholar
  22. 22.
    Friedenwald J, Hughes W, Hermann H (1944) Acid-base tolerance of the cornea. Arch Ophthalmol 31:279–283Google Scholar
  23. 23.
    Geerling G (2007) Eigenserum zur Therapie. Concept Ophthalmologie 04:18–20Google Scholar
  24. 24.
    Geerling G, Grus F, Seitz B et al (2008) Arzneimittelrechtliche Erlaubnis bei der Herstellung von Serum-Augentropfen. Ophthalmologe 7:632–638CrossRefGoogle Scholar
  25. 25.
    Giessler S, Struck HG, Giessler C (1996) Untersuchungen zur konsensuellen Entzündungsreaktion bei Verätzung des Kaninchenauges. Klin Monatsbl Augenheilkd 208:235–238PubMedCrossRefGoogle Scholar
  26. 26.
    Gimeno FL, Lavigne V, Gatto S et al (2007) Advances in corneal stem-cell transplantation in rabbits with severe ocular alkali burns. J Cataract Refract Surg 33:1958–1965CrossRefGoogle Scholar
  27. 27.
    Girard B, Bourcier F, Agdabede I, Laroche L (2002) Activity and epidemiology in an ophthalmological emergency center. F Fr Ophthalmol 25:701–711Google Scholar
  28. 28.
    Gomes JA, Santos MS dos, Cunha MC et al (2003) Amniotic membrane transplantation for partial and total limbal stem cell deficiency secondary to chemical burn. Ophthalmology 110:466–473PubMedCrossRefGoogle Scholar
  29. 29.
    Graupner O, Hausmann H (1970) Die Änderung des pH-Wertes in der Vorderkammer des Kaninchenauges nach Verätzung mit kleinsten Mengen laborüblicher Konzentrationen von Säure und Lauge. Graefes Arch Clin Exp Ophthalmol 180:60CrossRefGoogle Scholar
  30. 30.
    Green K, Paterson CA, Siddiqui A (1985) Ocular blood flow after experimental alkali burns and prostaglandin administration. Arch Ophthalmol 103:569–571PubMedGoogle Scholar
  31. 31.
    Guogas IM, Boyer JL (2009) Azithromycin suppresses bacterial lipase expressed by staphylococcus. ARVO, E-Abstract 5943/A549Google Scholar
  32. 32.
    Hahne M, Reichl S (2010) Simulation von Korneaepithelverletzungen mittels mechanischer und korrosiver Schädigung. Ophthalmologe 107:529–536PubMedCrossRefGoogle Scholar
  33. 33.
    He J, Bazan NG, Bazan HEP (2006) Alkali-induced corneal stromal melting prevention by a novel platelet-activating factor receptor antagonist. Arch Ophthalmol 124:70–78PubMedCrossRefGoogle Scholar
  34. 34.
    Heckelen A, Hermel M, Kondring B, Schrage NF (2004) Ascorbic acid reversibly inhibits proliferation of retinal pigment epithelial cells. Acta Ophthalmol Scand 82:564–568PubMedCrossRefGoogle Scholar
  35. 35.
    Herboth T, Geerling G, Duncker G et al (1998) Konsequente Anwendung des Aachener Therapiekonzeptes nach schwerer Verätzung beider Augen. Klin Monatsbl Augenheilkd 212:166–169PubMedCrossRefGoogle Scholar
  36. 36.
    Hermel M, Heckelen A, Kirchhof B, Schrage NF (2001) Inhibitory effect of ascorbic acid on human retinal pigment epithelial cell proliferation compared to cytostatic drugs-influence of histamine. Inflamm Res 50(Suppl 2):93–95Google Scholar
  37. 37.
    Herminghaus P, Geerling G, Hartwig D et al (2004) Epitheliotrophe Kapazität von Serum- und Plasmaaugentropfen. Ophthalmologe 101:998–1005PubMedGoogle Scholar
  38. 38.
    Herretes S, Suwan-Apichon O, Pirouzmanesh A et al (2006) Use of topical human amniotic fluid in the treatment of acute ocular alkali injuries in mice. Am J Ophthalmol 142:271–278PubMedCrossRefGoogle Scholar
  39. 39.
    Ho CK, Yen YL, Chang CH et al (2007) Epidemiologic study on work-related eye injuries in Kaohsiung, Taiwan. Kaohsiung J Med Sci 23:463–469PubMedCrossRefGoogle Scholar
  40. 40.
    Hojer J, Personne M, Hulten P, Ludwigs U (2002) Topical treatments for hydrofluoric acid burns: a blind controlled experimental study. J Toxicol Clin Toxicol 40:861–866PubMedCrossRefGoogle Scholar
  41. 41.
    Hosseini H, Nejabat M, Mehryar M et al (2007) Bevacizumab inhibits corneal neovascularization in an alkali burn induced model of corneal angiogenesis. Clinic Experiment Ophthalmol 35:745–748CrossRefGoogle Scholar
  42. 42.
    Hsu JKW, Johnston WT, Read RW et al (2003) Histopathology of corneal melting associated with diclofenac use after refractive surgery. J Cataract Refract Surg 29:250–256PubMedCrossRefGoogle Scholar
  43. 43.
    Huang Y, Meek KM, Ho MW et al (2001) Analysis of birefringence during wound healing and remodeling following alkali burns in rabbit cornea. Exp Eye Res 73:521–532PubMedCrossRefGoogle Scholar
  44. 44.
    Ivekovic R, Tedeschi-Reiner E, Novak-Laus K et al (2005) Limbal graft and/or amniotic membrane transplantation in the treatment of ocular burns. Ophthalmologica 219:297–302PubMedCrossRefGoogle Scholar
  45. 45.
    Iwanami H, Ishizaki M, Fukuda Y, Takahashi H (2009) Expression of matrix metalloproteinases (MMP)-12 by myofibroblasts during alkali-burned corneal wound healing. Curr Eye Res 34:207–214PubMedCrossRefGoogle Scholar
  46. 46.
    Jang IK, Ahn JI, Shin JS et al (2006) Transplantation of reconstructed corneal layer composed of corneal epithelium and fibroblasts on a lyophilized amniotic membrane to severely alkali-burned cornea. Artif Organs 30:424–431PubMedCrossRefGoogle Scholar
  47. 47.
    Jeng BH, Dupps WJ (2009) Autologous serum 50% eyedrops in the treatment of persistent corneal epithelial defects. Cornea 28:1104–1108PubMedCrossRefGoogle Scholar
  48. 48.
    Jiang A, Li C, Gao Y et al (2006) In vivo and in vitro inhibitory effect of amniotic extraction on neovascularization. Cornea 25:36–40CrossRefGoogle Scholar
  49. 49.
    Joseph A, Dua HS, King AJ (2001) Failure of amniotic membrane transplantation in the treatment of acute ocular burns. Br J Ophthalmol 85:1065–1069PubMedCrossRefGoogle Scholar
  50. 50.
    Kasper K, Kremling C, Geerling G (2008) Toxizität neuer Benetzungs- und Konservierungsmittel in vitro. Ophthalmologe 6:557–562CrossRefGoogle Scholar
  51. 51.
    Katircioglu YA, Budak K, Salvarli S, Duman S (2003) Amniotic membrane transplantation to reconstruct the conjunctival surface in case of chemical burn. Jpn J Ophthalmol 47:519–522PubMedCrossRefGoogle Scholar
  52. 52.
    Kato T, Saika S, Ohnishi Y (2006) Effects of the matrix metalloproteinase inhibitor GM 6001 on the destruction and alteration of epithelial basement membrane during the healing of post-alkali burn in rabbit cornea. Jpn J Ophthalmol 50:90–95PubMedCrossRefGoogle Scholar
  53. 53.
    Kenyon KR, Tseng SC (1989) Limbal autograft transplantation for ocular surface disorders. Ophthalmology 96:709–723PubMedGoogle Scholar
  54. 54.
    Kheirkhah A, Johnson DA, Paranjpe DR et al (2008) Temporary sutureless amniotic membrane patch for acute alkaline burns. Arch Ophthalmol 126:1059–1066PubMedCrossRefGoogle Scholar
  55. 55.
    Kobayashi A, Shirao Y, Yoshita T et al (2003) Temporary amniotic membrane patching for acute chemical burns. Eye 17:149–158PubMedCrossRefGoogle Scholar
  56. 56.
    Kruse FE, Rohrschneider K, Völcker HE (1999) Multilayer amniotic membrane transplantation for reconstruction of deep corneal ulcers. Ophthalmology 106:1504–1510PubMedCrossRefGoogle Scholar
  57. 57.
    Kruse FE, Rohrschneider K, Völcker HE (1999) Transplantation von Amnionmembran zur Rekonstruktion der Hornhautoberfläche. Operatives Vorgehen. Ophthalmologe 96:673–678PubMedCrossRefGoogle Scholar
  58. 58.
    Kruse FE, Cursiefen C (2008) Surgery of the cornea: corneal, limbal stem cell and amniotic membrane transplantation. In: Geerling G, Brewitt H (Hrsg) Surgery for the dry eye. Karger, Basel, S 159–170Google Scholar
  59. 59.
    Kruse FE, Meller D (2001) Die Amnionmembrantransplantation zur Rekonstruktion der Augenoberfläche. Ophthalmologe 98:801–810PubMedCrossRefGoogle Scholar
  60. 60.
    Kuckelkorn R, Luft I, Kottek AA et al (1993) Verätzungen und Verbrennungen im Einzugsbereich der RWTH Aachen. Klin Monatsbl Augenheilkd 203:34–42PubMedCrossRefGoogle Scholar
  61. 61.
    Kuckelkorn R, Kottek A, Reim M (1994) Intraokulare Komplikationen nach schweren Verätzungen – Häufigkeit und chirurgische Behandlung. Klin Monatsbl Augenheilkd 205:86–92PubMedCrossRefGoogle Scholar
  62. 62.
    Kuckelkorn R, Makropoulos W, Kottek A, Reim M (1995) Chemische Verätzungen der Augen: Ursachen, Behandlung und Prävention. Arbeitsmed Sozialmed Umweltmed 30:22–33Google Scholar
  63. 63.
    Kuckelkorn R, Redbrake C, Kottek A et al (1995) Tenon-Plastik und Frühkeratoplastik bei schwerstverätzten Augen. Ophthalmologe 92:439–444PubMedGoogle Scholar
  64. 64.
    Kuckelkorn R, Kottek A, Schrage N et al (1995) Langzeitergebnisse mit Tenon-Plastik behandelter schwerstverätzter Augen. Ophthalmologe 92:445–451PubMedGoogle Scholar
  65. 65.
    Kuckelkorn R, Schrage N, Redbrake C et al. (1996) Autologous transplantation of nasal mucosa after severe chemical and thermal eye burns. Acta Ophthalmol Scand 74:442–448PubMedCrossRefGoogle Scholar
  66. 66.
    Kuckelkorn R, Wolf S, Remky A, Redbrake C (1996) Fluoreszenzangiographie des vorderen Augenabschnittes bei schwerstverätzten Augen. Klin Monatsbl Augenheilkd 209:109–113PubMedCrossRefGoogle Scholar
  67. 67.
    Kuckelkorn R, Redbrake C, Reim M (1997) Tenonplasty: a new surgical approach for the treatment of severe eye burns. Ophthalmic Surg Lasers 28:105–110PubMedGoogle Scholar
  68. 68.
    Kuckelkorn R, Schrage N, Redbrake C (2000) Erste-Hilfe-Maßnahmen bei Verätzungen und Verbrennungen der Augen. Dtsch Ärzteblatt 97:B90–B95Google Scholar
  69. 69.
    Kuckelkorn R, Keller GKI, Redbrake C (2001) Glaukom nach schwersten Verätzungen und Verbrennungen. Ophthalmologe 98:1149–1156PubMedCrossRefGoogle Scholar
  70. 70.
    Kuznetsov SL, Nikolaeva LR, Spivak IA et al (2006) Effect of transplantation of cultured human neural stem and progenitor cells on regeneration of the cornea after chemical burn. Cell Technol Biol Med 2:129–132Google Scholar
  71. 71.
    Lass JH, Mack RJ, Imperia PS et al (1989) An in vitro analysis of aminoglycoside corneal epithelial toxicity. Curr Eye Res 8:299–304PubMedCrossRefGoogle Scholar
  72. 72.
    Lee SH, Tseng SC (1997) Amniotic membrane transplantation for persistent epithelial defects with ulceration. Am J Ophthalmol 123:303–312PubMedGoogle Scholar
  73. 73.
    Lenkiewicz E, Ferencowa A, Szewczykowa E (1992) Subconjunctival autohaemotherapy of ocular burns in our cases. Klin Oczna 94:113–114PubMedGoogle Scholar
  74. 74.
    Liang L, Li W, Ling S et al (2009) Amniotic membrane extraction solution for ocular chemical burns. Clin Experiment Ophthalmol 37:855–863PubMedCrossRefGoogle Scholar
  75. 75.
    Liggett P (1989) Ocular trauma in an urban population. Ophthalmology 97:581–584Google Scholar
  76. 76.
    Lin CP, Boehnke M (2000) Effect of fortified antibiotic solutions on corneal epithelial wound healing. Cornea 19:204–206PubMedCrossRefGoogle Scholar
  77. 77.
    Ling S, Qi C, Li W et al (2009) Crucial role of corneal lymphangiogenesis for allograft rejection in alkali-burned cornea bed. Clin Experiment Ophthalmol 37:874–883PubMedCrossRefGoogle Scholar
  78. 78.
    Liu H, Zhang W, Pan Z, Wu Y (2002) Experimental study on the treatment of corneal melting after alkali burn with GM 6001. Zhonghua Yan Ke Za Zhi 38:539–542PubMedGoogle Scholar
  79. 79.
    Lopez Garcia JS, Rivas L, Garcia Lozano I, Murube J (2006) Analysis of corneal surface evolution after moderate alkaline burns by using impression cytology. Cornea 25:908–913CrossRefGoogle Scholar
  80. 80.
    Lubeck D, Greene J (1988) Corneal injuries. Emerg Med Clin North Am 6:73–94PubMedGoogle Scholar
  81. 81.
    Ma DH, Kuo MT, Tsai YJ et al (2009) Transplantation of cultivated oral mucosal epithelial cells for severe corneal burn. Eye 23:1442–1450PubMedCrossRefGoogle Scholar
  82. 82.
    Mac Ewen C (1989) Eye injuries: a prospective survey of 5671 cases. Br J Ophthalmol 73:888–894CrossRefGoogle Scholar
  83. 83.
    Macdonald ECA, Cauchi PA, Azuara-Blanco A, Foot B (2009) Surveillance of severe chemical corneal injuries in the UK. Br J Ophthalmol 93:1177–1180PubMedCrossRefGoogle Scholar
  84. 84.
    Makarov PV, Katayev MG, Cundorova RA et al (2009) Rehabilitation of patients with burn injury to the eye. Vestn Oftalmol 125:52–57PubMedGoogle Scholar
  85. 85.
    Malhotra R, Sheikh I, Dheansa B (2009) The management of eyelid burns. Surv Ophthalmol 54:356–371PubMedCrossRefGoogle Scholar
  86. 86.
    Marquez De Aracena Del Cid R, Montero De Espinosa Escoriaza I (2009) Subconjunctival application of regenerative factor-rich plasma for the treatment of ocular alkali burns. Eur J Ophthalmol 19:909–915Google Scholar
  87. 87.
    Maskati QB, Maskati BT (1987) Management of chemical injuries of the eye. Indian J Ophthalmol 35:396–400PubMedGoogle Scholar
  88. 88.
    Meller D, Pires RT, Mack RJ et al (2000) Amniotic membrane transplantation for acute chemical or thermal burns. Ophthalmology 107:980–989PubMedCrossRefGoogle Scholar
  89. 89.
    Meller D, Pauklin M, Westekemper H, Steuhl KP (2010) Autologe Transplantation von kultiviertem Linsenepithel 107:1133–1138Google Scholar
  90. 90.
    Meller D, Pauklin M, Thomasen H et al (2011) Amnionmembrantransplantation am menschlichen Auge. Dtsch Ärzteblatt 108(14):243–248Google Scholar
  91. 91.
    Miliudin ES (2007) Evaluation of the efficiency of amnionplasty in the surgical treatment of severe ocular burn injury. Vestn Oftalmol 123:13–17PubMedGoogle Scholar
  92. 92.
    Mochimaru H, Usui T, Yaguchi T et al (2008) Suppression of alkali burn-induced corneal neovascularization by dendritic cell vaccination targeting VEGF receptor 2. Invest Ophthalmol Vis Sci 49:2172–2177PubMedCrossRefGoogle Scholar
  93. 93.
    Morgan L (1971) A new drug delivery system for the eye. Ind Med 40:11–13Google Scholar
  94. 94.
    Morgan S, Murray A (1996) Limbal autotransplantation in the acute and chronic phases of severe chemical injuries. Eye 10:349–354PubMedCrossRefGoogle Scholar
  95. 95.
    Ozdemir O, Tekeli O, Ornek K et al (2004) Limbal autograft and allograft transplantations in patients with corneal burns. Eye 18:241–248PubMedCrossRefGoogle Scholar
  96. 96.
    Pahlitzsch T, Schwartzkopf T, Knabe M (1988) Der Einfluß verschiedener nichtsteroidaler antiinflammatorischer Arzneimittel auf die corneale Wundheilung. Fortschr Ophthalmol 85:662–664PubMedGoogle Scholar
  97. 97.
    Pattamatta U, Willcox M, Stapleton F et al (2009) Bovine lactoferrin stimulates human corneal epithelial alkali wound healing in vitro. Invest Ophthalmol Vis Sci 50:1636–1643PubMedCrossRefGoogle Scholar
  98. 98.
    Pauklin M, Fuchsluger TA, Westekemper H, Steuhl KP, Meller D (2010) Midterm results of cultivated autologous and allogeneic limbal epithelial transplantation in limbal stem cell deficiency. Dev Ophthalmol 45:57–70PubMedCrossRefGoogle Scholar
  99. 99.
    Perry H, Hodes L, Seedor J et al (1993) Effect of doxycycline hyclate on corneal epithelial wound healing in the rabbit alkali-burn model. Preliminary observations. Cornea 12:379–382PubMedCrossRefGoogle Scholar
  100. 100.
    Pfister R, Paterson C (1980) Ascorbic acid in the treatment of alcali burns of the eye. Ophthalmology 87:1050–1057PubMedGoogle Scholar
  101. 101.
    Pfister R (1983) Chemical injuries of the eye. Ophthalmology 90:1246–1253PubMedGoogle Scholar
  102. 102.
    Pfister RR, Sommers CI (2006) L-Arginine-Threonine-Arginine (RTR) tetramer peptide inhibits ulceration in the alkali-injured rabbit cornea. Cornea 25:1187–1192PubMedCrossRefGoogle Scholar
  103. 103.
    Pflugfelder SC, Geerling G, Kinoshita S et al (2007) DEWS Management und Therapie. The ocular surface 5. htpp://www.theocularsurface.comGoogle Scholar
  104. 104.
    Pokhrel PK, Loftus SA (2007) Ocular emergencies. Am Fam Physician 76:829–836PubMedGoogle Scholar
  105. 105.
    Prabhasawat P, Tesavibul N, Prakairungthong N, Booranapong W (2007) Efficacy of amniotic membrane patching for acute chemical and thermal ocular burns. J Med Assoc Thai 90:319–326PubMedGoogle Scholar
  106. 106.
    Ram J, Sukhija J, Behera D, Gupta A (2010) Ocular and systemic morbidity profile in mass formic acid injuries. Ophthalmic Surg Lasers Imaging 41:123–127PubMedCrossRefGoogle Scholar
  107. 107.
    Redaktion AVP (2006) Orthokin®, eine aus Eigenblut hergestellte Individualarznei. Arzneiverordnungen Praxis 33:26Google Scholar
  108. 108.
    Redbrake C, Buchal V (1996) Keratoplastik mit Skleraring nach schwersten Verätzungen des vorderen Augenabschnittes. Klin Monatsbl Augenheilkd 208:145–151PubMedCrossRefGoogle Scholar
  109. 109.
    Rehany U, Waisman M (1994) Suppression of corneal allograft rejection by systemic cyclosporine-A in heavily vascularized rabbit corneas following alkali burns. Cornea 13:447–453PubMedCrossRefGoogle Scholar
  110. 110.
    Reim M (1987) Zur Pathophysiologie und Therapie von Verätzungen. Fortschr Ophthalmol 84:65–69PubMedGoogle Scholar
  111. 111.
    Reim M (1990) Ein neues Behandlungskonzept für schwere Verätzungen und Verbrennungen der Augen. Klin Monatsbl Augenheilkd 196:1–5PubMedCrossRefGoogle Scholar
  112. 112.
    Reim M, Kuckelkorn R (1995) Verätzungen und Verbrennungen der Augen. Akt Augenheilkd 20:76–89Google Scholar
  113. 113.
    Renard G (2004) Physiopathology of eye burns. J Fr Ophthalmol 27:1164–1169CrossRefGoogle Scholar
  114. 114.
    Rieck PW, Pleyer U (2003a) Wundheilung der Hornhaut. Ophthalmologe 100:749–770CrossRefGoogle Scholar
  115. 115.
    Rieck PW, Pleyer U (2003b) Wundheilung der Hornhaut. Ophthalmologe 100:1109–1130PubMedCrossRefGoogle Scholar
  116. 116.
    Rigal-Sastourne JC, Tixier JM, Renard JP et al (2002) Corneal burns and matrix metalloproteinases (MMP-2 and -9): the effects of human amniotic membrane transplantation. J Fr Ophthalmol 25:685–693Google Scholar
  117. 117.
    Rihawi S, Frentz M, Reim M, Schrage N (2005) Ist Wasser die beste Ersatzspüllösung bei Augenverätzung? Z Prakt Augenheilkd 26:440–444Google Scholar
  118. 118.
    Rihawi S, Frentz M, Schrage N (2006) Emergency treatment of eye burns: which rinsing solution should we choose? Graefes Arch Clin Exp Ophthalmol 244:845–854PubMedCrossRefGoogle Scholar
  119. 119.
    Rihawi S, Frentz M, Reim M, Schrage NF (2008) Rinsing with isotonic saline solution for eye burns should be avoided. Burns 34:1027–1032PubMedCrossRefGoogle Scholar
  120. 120.
    Risa O, Saether O, Midelfart A et al (2002) Analysis of immediate changes of water-soluble metabolites in alkali-burned rabbit cornea, a aqueous humor and lens by high-resolution 1 H-NMR spectroscopy. Graefes Arch Clin Exp Ophthalmol 240:49–55PubMedCrossRefGoogle Scholar
  121. 121.
    Rochels R (1985) The role of lipid mediators in corneal inflammations. In: European Society of Ophthalmology (Congress book) Metabolic eye diseases. Yliopistopaino, Helsinki, S 379–380Google Scholar
  122. 122.
    Roper-Hall MJ (1965) Thermal and chemical burns. Trans Ophthalmol Soc UK 85:631–653PubMedGoogle Scholar
  123. 123.
    Said T, Dutot M, Labbe A et al (2009) Ocular burn: rinsing and healing with ionic marine solutions and vegetable oils. Ophthalmologica 223:52–59PubMedCrossRefGoogle Scholar
  124. 124.
    Saika S, Yamanaka O, Okada Y et al (2007) Effect of overexpression of ppar (gamma) on the healing process of corneal alkali burn in mice. AM J Physiol Cell Physiol 293:75–86CrossRefGoogle Scholar
  125. 125.
    Schrage NF, Flick S, Fischern T von et al (1997) Temperaturveränderungen der Hornhaut durch Anlegen eines Augenverbandes. Ophthalmologe 94:492–495PubMedCrossRefGoogle Scholar
  126. 126.
    Schrage NF, Schlossmacher B, Aschenberner W et al (2001) Phosphate buffer in alkali eye burns as an inducer of experimental corneal calcification. Burns 27:459–464PubMedCrossRefGoogle Scholar
  127. 127.
    Schrage NF, Kompa S, Ballmann B et al (2005) Relationship of eye burns with calcification of the cornea? Graefes Arch Clin Exp Ophthalmol 243:780–748PubMedCrossRefGoogle Scholar
  128. 128.
    Schulze F, Tost M (1967) Neue Applikatoren zur Dauertropftherapie in der Ophthalmologie und ihre Anwendungsmöglichkeiten. Klin Monatsbl Augenheilkd 151:471–477Google Scholar
  129. 129.
    Seedor J, Perry H, Mc Namara T et al (1987) Systemic tetracycline treatment of alkali-induced corneal ulceration in rabbits. Arch Ophthalmol 105:268–271PubMedGoogle Scholar
  130. 130.
    Seitz B, Hayashi S, Wee WR et al (1996) In vitro effects of aminoglycolosides and fluoroquinolones on keratocytes. Invest Ophthalmol Vis Sci 37:656–665PubMedGoogle Scholar
  131. 131.
    Seitz B, Sauer R, Hofmann-Rummelt C et al (2003) Amniontransplantation. Z Prakt Augenheilkd 24:445–450Google Scholar
  132. 132.
    Seitz B, Grüterich M, Cursiefen C, Kruse FE (2005) Konservative und chirurgische Therapie der neurotrophen Keratopathie. Ophthalmologe 102:15–26PubMedCrossRefGoogle Scholar
  133. 133.
    Seitz B (2007) Amniontransplantation. Ophthalmologe 104:1075–1079PubMedCrossRefGoogle Scholar
  134. 134.
    Sekundo W, Augustin AJ, Strempel I (2002) Topical allopurinol or corticosteroids and acetylcysteine in the early treatment of experimental corneal alkali burns: a pilot study. Eur J Ophthalmol 12:366–372PubMedGoogle Scholar
  135. 135.
    Shahriari HA, Tokhmehchi F, Reza M, Hashemi NF (2008) Comparison of the effect of amniotic membrane suspension and autologous serum on alkaline corneal epithelial wound healing in the rabbit model. Cornea 27:1148–1150PubMedCrossRefGoogle Scholar
  136. 136.
    Sharifipour F, Zamani M, Idani E, Hemmati AA (2007) Oxygen therapy for severe corneal alkali burn in rabbits. Cornea 26:1107–1110PubMedCrossRefGoogle Scholar
  137. 137.
    Shimazaki J, Yang HY, Tsubota K (1997) Amniotic membrane transplantation for ocular surface reconstruction in patients with chemical and thermal burns. Ophthalmology 104:2068–2076PubMedGoogle Scholar
  138. 138.
    Sosne G, Szliter EA, Barrett R et al (2002) Thymosin beta 4 promotes corneal wound healing and decreases inflammation in vivo following alkali injury. Exp Eye Res 74:293–299PubMedCrossRefGoogle Scholar
  139. 139.
    Sosne G, Christopherson PL, Barrett RP, Fridman R (2005) Thymosin-β4 modulates corneal matrix metalloproteinase levels and polymorphonuclear cell infiltration after alkali injury. Invest Ophthalmol Vis Sci 46:2388–2395PubMedCrossRefGoogle Scholar
  140. 140.
    Spector J, Fernandez WG (2008) Chemical, thermal, and biological ocular exposures. Emerg Med Clin North Am 26:125–136PubMedCrossRefGoogle Scholar
  141. 141.
    Spelsberg H, Sundmacher R (2005) Die Bedeutung der frühzeitigen Aufklebung harter Kontaktlinsen in der Notfallbehandlung schwerer Alkaliverätzungen der Hornhaut (Fallbericht). Klin Monatsbl Augenheilkd 222:905–909PubMedCrossRefGoogle Scholar
  142. 142.
    Spoerl E, Wollensak G, Reber F, Pillunat L (2004) Cross-Linking of human amniotic membrane by glutaraldehyde. Ophthalmic Res 36:71–77PubMedCrossRefGoogle Scholar
  143. 143.
    Spöler F, Frentz M, Först M et al (2008) Analysis of hydrofluoric acid penetration and decontamination of the eye by means of time-resolved optical coherence tomography. Burns 34:549–555PubMedCrossRefGoogle Scholar
  144. 144.
    Stoiber J, Muss WH, Pohla-Gubo G et al (2002) Histopathology of human corneas after amniotic membrane and limbal stem cell transplantation for severe chemical burn. Cornea 21:482–489PubMedCrossRefGoogle Scholar
  145. 145.
    Stoiber J, Ruckhofer J, Muss W, Grabner G (2002) Amnion-Limbus-Transplantation zur Oberflächenrekonstruktion nach schwerer Verätzung und Verbrennung. Ophthalmologe 99:839–848PubMedCrossRefGoogle Scholar
  146. 146.
    Struck HG, Franke C, Tost M, Taube C (1988) Tierexperimentelle und klinische Untersuchungen zum Einsatz von Antiphlogistika bei Verätzungen des Auges. Klin Monatsbl Augenheilkd 193:401–406PubMedCrossRefGoogle Scholar
  147. 147.
    Struck HG, Geiser H, Taube C et al (1991) Zur antiphlogistischen Wirksamkeit des Ginkgolids BN 52021 bei der Verätzung des Kaninchenauges. Klin Monatsbl Augenheilkd 199:278–282PubMedCrossRefGoogle Scholar
  148. 148.
    Struck HG, Geiser H, Block HU et al (1991) Leukotriene antagonist S 872 419 A for early – phase treatment of chemical burn in the rabbit eye. Eur J Ophthalmol 1:137–141PubMedGoogle Scholar
  149. 149.
    Struck HG, Gießler S, Gießler C et al (1993) Influence of nonsteroidal drugs on ocular inflammation induced by chemical burn of the rabbit eye. In: Demouchamps JP, Verougstraete C, Caspers L-Velu, Tassignon MJS (Hrsg) Recent advances in uveitis. Kugler Publications, Amsterdam NewYork, S 581–584Google Scholar
  150. 150.
    Struck HG, Zimmer R (1995) Morbiditätswandel bei Augenverletzungen. Med-Report 19:6Google Scholar
  151. 151.
    Struck HG, Giessler S, Giessler C (1995) Zum Einfluß nichtsteroidaler Antiphlogistika auf die Entzündungsreaktion. Ophthalmologe 92:849–853PubMedGoogle Scholar
  152. 152.
    Struck HG, Giessler S (1998) Treatment of ocular inflammation by inhibition of leucotriene activity. In: Diestelhorst M (Hrsg) Prostaglandins in ophthalmology. Kaden, Heidelberg, S 69–75Google Scholar
  153. 153.
    Struck HG (2008) Therapie von Verätzungen und Verbrennungen der Augen. Klin Monatsbl Augenheilkd 225:R183–R198PubMedCrossRefGoogle Scholar
  154. 154.
    Tan B (1970) Oklahoma eye irrigation tube. Trans Am Acad Ophthalmol Otolaryngol 74:435–437PubMedGoogle Scholar
  155. 155.
    Terzidou C, Georgiadis N (1997) A simple ocular irrigation system for alkaline burns of the eye. Ophthalmic Surg Lasers 28:255–257PubMedGoogle Scholar
  156. 156.
    Thiel R (1965) Behandlung von Verätzungen. Klin Monatsbl Augenheilkd 146:581–587PubMedGoogle Scholar
  157. 157.
    Tripathi BJ, Tripathi RC (1989) Cytotoxic effects of benzalkonium chloride and chlorobutanol on human corneal epithelial cells in vitro. Lens Eye Toxic Res 6:395–403PubMedGoogle Scholar
  158. 158.
    Tsai RJ, Li L, Chen J (2000) Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med 343:86–93PubMedCrossRefGoogle Scholar
  159. 159.
    Tseng SC, Prabhasawat P, Barton K et al (1998) Amniotic membrane transplantation with or without limbal allografts for corneal surface reconstruction in patients with limbal stem cell deficiency. Arch Ophthalmol 116:431–441PubMedGoogle Scholar
  160. 160.
    Tseng SC, Di Pascuale MA, Liu DT et al (2005) Intraoperative mitomycin C and amniotic membrane transplantation for fornix reconstruction in severe cicatricial ocular surface diseases. Ophthalmology 112:896–903PubMedCrossRefGoogle Scholar
  161. 161.
    Tost F, Hübner D, Clemens S (2002) Erfahrungen mit der „biologischen Verbandslinse“. Kongressausgabe 100. Kongress der DOG 09:10Google Scholar
  162. 162.
    Tost M, Seewald E (1961) Beitrag zur konservativen Therapie von Augenverätzungen. Klin Monatsbl Augenheilkd 139:377–385Google Scholar
  163. 163.
    Treumer F, Flöhr C, Klettner A et al (2010) Expression von Matrixmetalloproteinase 19 in der humanen Kornea. Ophthalmologe 107:647–653PubMedCrossRefGoogle Scholar
  164. 164.
    Ucakhan OO, Koklu G, Firat E (2002) Nonpreserved human amniotic membrane transplantation in acute and chronic chemical eye injuries. Cornea 21:169–172PubMedCrossRefGoogle Scholar
  165. 165.
    Ueno, Mlyons BL, Burzenski LM et al (2005) Accelerated wound healing of alkali-burned corneas in MRL is associated with a reduced inflammatory signature. Invest Ophthalmol Vis Sci 46:4097–4106PubMedCrossRefGoogle Scholar
  166. 166.
    Uusitalo H et al (2010) Switching from a preserved to a preservative-free prostaglandin preparation in topical glaucoma medication. Acta Ophthalmol 88:329–336PubMedGoogle Scholar
  167. 167.
    Van Loey NE, Van Son MJ (2003) Psychopathology and psychological problems in patients with burn scars: epidemiology and management. Am J Clin Dermatol 4:245–272CrossRefGoogle Scholar
  168. 168.
    Watz H, Reim M (1973) Aus der Unfallstatistik einer ländlichen Augenklinik. Klin Monatsbl Augenheilkd 162:648–655PubMedGoogle Scholar
  169. 169.
    Wenkel H, Rummelt V, Naumann GOH (1997) Autologe Nasenschleimhauttransplantation frühzeitig nach schwersten Verätzungen. Ophthalmologe 94:104–108PubMedCrossRefGoogle Scholar
  170. 170.
    White CE, Park MS, Renz EM et al (2007) Burn center treatment of patients with severe anhydrous ammonia injury: case reports and literature review. J Burn Care Res 28:922–928PubMedCrossRefGoogle Scholar
  171. 171.
    http://www.giftinfo.uni-mainz.deGoogle Scholar
  172. 172.
    Xie Y, Tan Y, Tang S (2004) Epidemiology of 377 patients with chemical burns in Guangdong province. Burns 30:569–572PubMedCrossRefGoogle Scholar
  173. 173.
    Yan Y, Wang K, Zeng Y et al (2007) A bio-mathematical model of time prediction in corneal angiogenesis after alkali burn. Burns 33:511–517PubMedCrossRefGoogle Scholar
  174. 174.
    Ye J, Yao K, Kim JC (2006) Mesenchymal stem cell transplantation in a rabbit corneal alkali burn model: engraftment and involvement in wound healing. Eye 20:482–490PubMedCrossRefGoogle Scholar
  175. 175.
    Yoeruek E, Ziemssen F, Henke-Fahle S et al (2008) Safety, penetration and efficacy of topically applied bevacizumab: evaluation of eyedrops in corneal neovascularization after chemical burn. Acta Ophthalmol 86:322–328PubMedCrossRefGoogle Scholar
  176. 176.
    Zagelbaum B, Tostanowski J, Kerner D et al (1993) Urban eye trauma. Ophthalmology 100:851–856PubMedGoogle Scholar
  177. 177.
    Zhang Z, Ma J, Gao G et al (2005) Plasminogen kringle 5 inhibits alkali-burn-induced corneal neovascularization. Invest Ophthalmol Vis Sci 46:4062–4071PubMedCrossRefGoogle Scholar
  178. 178.
    Zhao B, Ma A, Martin FL, Fullwood NJ (2009) An investigation into corneal alkali burns using an organ culture model. Cornea 28:541–546PubMedCrossRefGoogle Scholar
  179. 179.
    Zhou N, Ma P, Li DQ, Pflugfelder SC (2009) Azithromycin suppresses pro-inflammatory mediators stimulated by a TLR2 Ligand Zymosan in human corneal epithelial cells. ARVO, E-Abstract 5545/A516Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.AugenklinikMartin-Luther-Universität Halle-WittenbergHalleDeutschland
  2. 2.Augenklinik Köln-MerheimKliniken der Stadt Köln gGmbHKölnDeutschland

Personalised recommendations