Der Ophthalmologe

, Volume 106, Issue 4, pp 299–304 | Cite as

Die Rolle des retinalen Pigmentepithels im Rahmen visueller Funktionen

  • O. Strauß


Wahrscheinlich bestand schon die Urform der Photorezeptoren aus einer Funktionseinheit einer lichtsensitiven Zelle sowie einer Pigmentzelle. Schon in der Embryonalentwicklung formt sich diese Einheit in einem Differenzierungsprozess, indem sich beide Interaktionspartner beeinflussen. In der Klinik ist gerade das Verständnis, wie Photorezeptoren und Pigmentzelle zusammenarbeiten, essenziell für die Analyse und Therapieentwicklung vieler Formen der Erblindung. So können Mutationen in Genen, die in Photorezeptoren exprimiert sind, primäre Pigmentepithelerkrankungen auslösen und umgekehrt. Dieser Artikel fasst die wesentlichen Funktionen des Pigmentepithels in seiner Vielfältigkeit zusammen und benennt die Funktionen, deren Versagen von klinischer Bedeutung sind.


Retinales Pigmentpithel Phagozytose Ionentransport Retinalzyklus Sekretion 

The role of retinal pigment epithelium in visual functions


The evolution of light sensitive cells probably began with a primitive functional unit composed of a photoreceptor cell and a pigmented cell. Even during embryonic development this functional unit is formed in a differentiation process in which the two interacting partners depend on each other. For some of the most important forms of retinal degeneration this knowledge on the functional cooperation between retinal pigment epithelium and photoreceptors is of great importance for analysis and development of therapeutic approaches. In this way mutations of genes which are expressed in photoreceptors can lead to diseases which start in the retinal pigment epithelium and vice versa. This article summarizes the variety of different functions of the retinal pigment epithelium and describes the failure of those functions which are of most clinical importance.


Retinal pigment epithelium Phagocytosis Ion transport Visual cycle Secretion 



Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.


  1. 1.
    Alm A, Bill A (1970) Blood flow and oxygen extraction in the cat uvea at normal and high intraocular pressures. Acta Physiol Scand 80:19–28PubMedCrossRefGoogle Scholar
  2. 2.
    Alm A, Bill A (1973) Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus) a study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Exp Eye Res 15:15–29PubMedCrossRefGoogle Scholar
  3. 3.
    Arden GB, Constable PA (2006) The electro-oculogram. Prog Retin Eye Res 25:207–248PubMedCrossRefGoogle Scholar
  4. 4.
    Baehr W, Wu SM, Bird AC, Palczewski K (2003) The retinoid cycle and retina disease. Vis Res 43:2957–2958PubMedCrossRefGoogle Scholar
  5. 5.
    Bazan NG, Gordon WC, Rodriguez De Turco EB (1992) Docosahexaenoic acid uptake and metabolism in photoreceptors retinal conservation by an efficient retinal pigment epithelial cell-mediated recycling process. Neurobiol Essent Fatty Acids 295–306Google Scholar
  6. 6.
    Besch D, Jägle H, Scholl HPN et al (2003) Inherited multifocal RPE-diseases mechanisms for local dysfunction in global retinoid cycle defects. Vis Res 43:3095–3108PubMedCrossRefGoogle Scholar
  7. 7.
    Bok D (1993) The retinal pigment epithelium a versatile partner in vision. J Cell Sci Suppl 17:189–195PubMedGoogle Scholar
  8. 8.
    Boulton M (1991) Ageing of the retinal pigment epithelium. In: Osborne NN, Chader GJ (eds) Progress in: retinal research. Pergamon Press, Oxford New York, p 125–151Google Scholar
  9. 9.
    Boulton M, Dayhaw-Barker P (2001) The role of the retinal pigment epithelium: topographical variation and ageing changes. Eye 15:384–389PubMedGoogle Scholar
  10. 10.
    Frambach DA, Roy CE, Valentine Jl et al (1989) Precocious retinal adhesion is affected by furosemide and ouabain. Curr Eye Res 8:553–556PubMedCrossRefGoogle Scholar
  11. 11.
    Gal A, Li Y, Thompson DA et al (2000) Mutations in MERTK the human orthologue of the RCS rat retinal dystrophy gene cause retinitis pigmentosa. Nat Genet 26:270–271PubMedCrossRefGoogle Scholar
  12. 12.
    Hamann S (2002) Molecular mechanisms of water transport in the eye. Int Rev Cytol 215:395–431PubMedCrossRefGoogle Scholar
  13. 13.
    Holz FG, Pauleikhoff D, Klein R et al (2004) Pathogenesis of lesions in late age-related macular disease. Am J Ophthalmol 137:504–510PubMedCrossRefGoogle Scholar
  14. 14.
    Hughes BA, Gallemore RP, Miller SS (1998) Transport mechanisms in the retinal pigment epithelium. In: Marmor MF, Wolfensberger TJ (eds) The retinal pigment epithelium. Oxford University Press, New York Oxford, p 103–134Google Scholar
  15. 15.
    Lavail MM (1976) Rod outer segment disk shedding in rat retina: relationship to cyclic lighting. Science 194:1071–1074PubMedCrossRefGoogle Scholar
  16. 16.
    Marmor MF (1999) Mechanisms of fluid accumulation in retinal edema. Doc Ophthalmol 97:239–249PubMedCrossRefGoogle Scholar
  17. 17.
    Marshall J, Hussain AA, Starita C et al (1998) Aging and Bruch’s membrane. In: Marmor MF, Wolfensberger TJ (eds) The retinal pigment epithelium. Oxford University Press, New York Oxford, p 669–692Google Scholar
  18. 18.
    Nandrot EF, Chang Y, Finnemann SC (2008) Alphavbeta 5 integrin receptors at the apical surface of the RPE: one receptor, two functions. Adv Exp Med Biol 613:369–375PubMedCrossRefGoogle Scholar
  19. 19.
    Parver LM, Auker C, Carpenter DO (1980) Choroidal blood flow as a heat dissipating mechanism in the macula. Am J Ophthalmol 89:641–646PubMedGoogle Scholar
  20. 20.
    Rosenthal R, Heimann H, Agostini H et al (2007) Ca2+ channels in retinal pigment epithelial cells regulate vascular endothelial growth factor secretion rates in health and disease. Mol Vis 13:443–456PubMedGoogle Scholar
  21. 21.
    Rosenthal R, Strauss O (2002) Ca2+-channels in the RPE. Adv Exp Med Biol 514:225–235PubMedGoogle Scholar
  22. 22.
    Schutt F, Pauleikhoff D, Holz FG (2002) Vitamins and trace elements in age-related macular degeneration. Current recommendations, based on the results of the AREDS study. Ophthalmologe 99:301–303PubMedCrossRefGoogle Scholar
  23. 23.
    Stamer WD, Bok D, Hu J et al (2003) Aquaporin-1 channels in human retinal pigment epithelium: role in transepithelial water movement. Invest Ophthalmol Vis Sci 44:2803–2808PubMedCrossRefGoogle Scholar
  24. 24.
    Steinberg RH (1985) Interactions between the retinal pigment epithelium and the neural retina. Doc Ophthalmol 60:327–346PubMedCrossRefGoogle Scholar
  25. 25.
    Steinberg RH, Linsenmeier RA, Griff ER (1983) Three light-evoked responses of the retinal pigment epithelium. Vision Res 23:1315–1323PubMedCrossRefGoogle Scholar
  26. 26.
    Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881PubMedCrossRefGoogle Scholar
  27. 27.
    Streilein JW (2003) Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat Rev Immunol 3:879–889PubMedCrossRefGoogle Scholar
  28. 28.
    Thompson DA, Gal A (2003) Genetic defects in vitamin A metabolism of the retinal pigment epithelium. Dev Ophthalmol 37:141–154PubMedCrossRefGoogle Scholar
  29. 29.
    Uehara F, Matthes MT, Yasumura D et al (1990) Light-evoked changes in the interphotoreceptor matrix. Science 248:1633–1636PubMedCrossRefGoogle Scholar
  30. 30.
    Xue L, Gollapalli DR, Maiti P et al (2004) A palmitoylation switch mechanism in the regulation of the visual cycle. Cell 117:761–771PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2009

Authors and Affiliations

  1. 1.Experimentelle Ophthalmologie Klinik und Poliklinik für AugenheilkundeKlinikum der Universität RegensburgRegensburgDeutschland

Personalised recommendations