Der Ophthalmologe

, Volume 104, Issue 11, pp 972–977

Mögliche Rolle von Alkylphosphocholinen bei der Ablatio-Chirurgie

  • K.H. Eibl
  • G.P. Lewis
  • K. Betts
  • K.A. Linberg
  • A. Gandorfer
  • S.K. Fisher
  • A. Kampik
Originalien

Zusammenfassung

Hintergrund

Die proliferative Vitreoretinopathie (PVR) gilt als eine der schwersten Komplikationen nach Ablatio-Chirurgie. Bisher konnte sich keine Pharmakotherapie zur Kontrolle der zellbiologischen Komponente dieser Erkrankung klinisch etablieren. Ziel unserer Studie war es, den Einfluss von Alkylphosphocholinen (APCs; hier: Erucylphosphocholin; ErPC), neuen pharmakologischen Substanzen mit antiproliferativen Eigenschaften, auf die intraretinale Proliferation nach experimentell induzierter Netzhautablösung an einem etablierten in vivo Modell zu untersuchen.

Methoden

Am Kaninchenauge wurde eine Netzhautablösung durch subretinale Injektion mit einer Mikropipette induziert. An Tag 1 oder an Tag 2 erfolgte die intravitreale Injektion von Erucylphosphocholin (ErPC). Bromodeoxyuridine (5-bromo-2-deoxyuridine, BrdU) wurde an Tag 3 injiziert. Nach Fixierung des Gewebes erfolgte eine Dreifachmarkierung der Netzhaut mit Anti-BrdU (Proliferationsmarker), Isolectin B4 (Marker für retinale Mikrogliazellen) und Anti-Vimentin (Marker für retinale Müller-Gliazellen). Die Anzahl proliferierender, also Anti-BrdU-markierter Zellen pro mm Netzhaut wurde am konfokalen Laser-Scanning-Mikroskop bestimmt. Die Toxizität wurde anhand von gefärbten Gewebeschnitten am Lichtmikroskop sowie ultrastrukturell am Elektronenmikroskop beurteilt.

Ergebnisse

Nach einmaliger intravitrealer Gabe von Erucylphosphocholin (ErPC) zeigte sich eine signifikante Abnahme der Proliferation nichtneuraler retinaler Zellen an Tag 3 nach Induktion einer Netzhautablösung am Kaninchenauge. Eine Injektion an Tag 1 war der Injektion an Tag 2 nach Netzhautablösung überlegen. Für keine der applizierten ErPC-Konzentrationen war morphologisch eine retinale Toxizität nachweisbar.

Schlussfolgerungen

Alkylphosphocholine sind neue Substanzen, die eine Inhibition der intraretinalen Proliferation nach Netzhautablösung im Tiermodell bewirken. Möglicherweise könnten APCs zukünftig zur Prophylaxe einer PVR bei der Ablatio-Chirurgie in noch zu definierenden Situationen intravitreal gegeben werden, um die zellbiologische Komponente der Erkrankung zu kontrollieren. Unabdingbare Voraussetzung dafür sind jedoch weitere, langfristige Untersuchungen zur Toxizität dieser neuen Substanzgruppe.

Schlüsselwörter

Netzhautablösung Proliferative Vitreoretinopathie Vitreoretinale Pharmakologie Retinale Zellen Retinales Pigmentepithel 

Possible role of alkylphosphocholines in retinal reattachment surgery

Abstract

Background

Proliferative vitreoretinopathy (PVR) is a major complication after retinal detachment surgery, but there is no established pharmacotherapy available to control the cell biology of the disease. The aim of this study was to investigate the role of alkylphosphocholines [APCs; erucylphosphocholine (ErPC) was used in this study], novel pharmacologic substances with antiproliferative properties, on intraretinal proliferation initiated by experimental retinal detachment in a well-established in vivo model.

Methods

Retinal detachments were created in adult pigmented rabbits. ErPC was injected intravitreally on either day 1 or day 2 after detachment. Bromodeoxyuridine (5-bromo-2-deoxyuridine, BrdU) was injected on day 3. Following fixation, retinas were triple-labelled with anti-BrdU (proliferation marker), Isolectin B4 (retinal microglia marker), and anti-vimentin (retinal Mueller glia cell marker). The number of anti-BrdU-labelled cells per millimeter of retina was determined from sections imaged by laser scanning confocal microscopy. Toxicity was assessed by light and electron microscopy.

Results

A single intravitreal injection of ErPC had a significant effect on reducing the number of proliferating non-neural retinal cells on day 3 after experimental retinal detachment in the rabbit. Injection of ErPC on day 1 was more effective than when given on day 2. No evidence of toxicity was observed in the retina on day 3 for any of the conditions.

Conclusions

APCs are novel pharmacologic substances that significantly inhibited intraretinal proliferation after experimental retinal detachment in this in vivo model. They could be considered as an adjunct therapy at the time of retinal reattachment surgery to potentially prevent proliferative vitreoretinal diseases such as PVR. However, long-term toxicity studies must be performed before APCs can be considered for clinical application.

Keywords

Retinal detachment Proliferative vitreoretinopathy Vitreoretinal pharmacology Retinal cells Retinal pigment epithelium 

Literatur

  1. 1.
    Asaria RHY, Kon CH, Bunce C et al. (2001) Adjuvant 5-fluouracil and heparin prevents proliferative vitreoretinopathy. Ophthalmology 108: 1179–1183PubMedCrossRefGoogle Scholar
  2. 2.
    Berger AS, Cheng CK, Pearson PA et al. (1996) Intravitreal sustained release corticosteroid-5-fluoruracil conjugate in the treatment of experimental proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 37: 2318–2325PubMedGoogle Scholar
  3. 3.
    Cai J, Wei R, Ma X et al. (2001) Cytotoxic effects of antiproliferative agents on human retinal glia cells in vitro. Int Ophthalmol 24: 225–231PubMedCrossRefGoogle Scholar
  4. 4.
    Charteris DG, Aylward GW, Wong D et al. (2004) A randomised controlled trial of combined 5-fluouracil and low-molecular weight heparin in management of established proliferative vitreoretinopathy. Ophthalmology 111: 2240–2245PubMedCrossRefGoogle Scholar
  5. 5.
    Eibl H, Unger C (1990) Hexadecylphosphocholine: a new and selective antitumor drug. Cancer Treat Rev 17: 233–242PubMedCrossRefGoogle Scholar
  6. 6.
    Eibl KH, Banas B, Schoenfeld CL et al. (2003) Alkylphosphocholines inhibit proliferation of human retinal pigment epithelium. Invest Ophthalmol Vis Sci 44: 3556–3561PubMedCrossRefGoogle Scholar
  7. 7.
    Eibl KH, Kook D, Priglinger S et al. (2006) Human retinal pigment epithelial cell attachment, spreading and migration inhibition by alkylphosphocholines. Invest Ophthalmol Vis Sci 47: 364–370PubMedCrossRefGoogle Scholar
  8. 8.
    Eibl KH, Lewis GP, Betts K et al. (2007) The effect of Alkylphosphocholines on intraretinal proliferation initiated by experimental retinal detachment. Invest Ophthalmol Vis Sci 48: 1305–1311PubMedCrossRefGoogle Scholar
  9. 9.
    Esser P, Tervooren D, Heimann K et al. (1998) Intravitreal daunomycin induces multidrug resistance in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 39: 164–170PubMedGoogle Scholar
  10. 10.
    Fisher SK, Lewis GP (2003) Mueller cell and neuronal remodelling in retinal detachment and reattachment and their potential consequences for visual recovery: a review and reconsideration of recent data. Vis Res 43: 887–897PubMedCrossRefGoogle Scholar
  11. 11.
    Fisher SK, Lewis GP, Linberg KA et al. (2005) Cellular remodelling in mammalian retina: results from studies of experimental retinal detachment. Prog Retin Eye Res 24: 395–431PubMedCrossRefGoogle Scholar
  12. 12.
    Francke M, Faude F, Pannicke T et al. (2005) Glial cell-mediated spread of retinal degeneration during detachment: a hypothesis based upon studies in rabbits. Vis Res 45: 2256–2267PubMedCrossRefGoogle Scholar
  13. 13.
    Garweg JG, Wegmann-Burns M, Goldblum D (2006) Effects of daunorubicin, mitomycin C, azathioprine and cyclosporin A on human retinal pigmented epithelial, corneal endothelial and conjunctival cell lines. Graefes Arch Clin Exp Ophthalmol 244: 382–389PubMedCrossRefGoogle Scholar
  14. 14.
    Hinton DR, He S, Jin ML et al. (2002) Novel growth factors involved in the pathogenensis of proliferative vitreoretinopathy. Eye 16: 422–428PubMedCrossRefGoogle Scholar
  15. 15.
    Iandiev I, Uckermann O, Pannicke T et al. (2006) Glial cell reactivity in a porcine model of retinal detachment. Invest Ophthalmol Vis Sci: 2161–2171CrossRefGoogle Scholar
  16. 16.
    Kampik A, Kenyon KR, Michels RG et al. (1981) Epiretinal and vitreous membranes. Comparative study of 56 cases. Arch Ophthalmol 99: 1445–1454PubMedGoogle Scholar
  17. 17.
    Kirchhof B (2004) Strategies to influence PVR development. Graefes Arch Clin Exp Ophthalmol 242: 699–703PubMedCrossRefGoogle Scholar
  18. 18.
    Laqua H, Machemer R (1975) Glial cell proliferation in retinal detachment (massive periretinal proliferation). Am J Ophthalmol 80: 602–618PubMedGoogle Scholar
  19. 19.
    Leonard R, Hardy J, Tienhoven G van et al. (2001) Randomized, double-blind, placebo-controlled, multicenter trial of 6% miltefosine solution, a topical chemotherapy in cutaneous metastases from breast cancer. J Clin Oncol 21: 4150–4159Google Scholar
  20. 20.
    Lewis H, Aaberg TM, Abrams GW (1991) Causes of failure after initial vitreoretinal surgery for severe proliferative vitreoretinopathy. Am J Ophthalmol 111: 8–14PubMedGoogle Scholar
  21. 21.
    Lewis GP, Charteris DG, Sethi CS et al. (2002) The ability of rapid retinal reattachment to stop or reverse the cellular and molecular events initiated by detachment. Invest Ophthalmol Vis Sci 43: 2412–2420PubMedGoogle Scholar
  22. 22.
    Rahimy MH, Peyman GA, Fernandes ML et al. (1994) Effects of an intravitreal daunomycin implant on experimental proliferative vitreoretinopathy: simultaneous pharmacokinetic and pharmacodynamic evaluations. J Ocul Pharmacol 10: 561–570PubMedCrossRefGoogle Scholar
  23. 23.
    Roque RS, Caldwell RB (1993) Isolation and culture of retinal microglia. Curr Eye Res 12: 285–290PubMedCrossRefGoogle Scholar
  24. 24.
    Sakamoto T, Miyazaki M, Hisatomi T et al. (2002) Triamcinolone-assisted pars-plana vitrectomy improves the surgical procedure and decreases the postoperative blood-ocular barrier breakdown. Graefes Arch Clin Exp Ophthalmol 240: 423–429PubMedCrossRefGoogle Scholar
  25. 25.
    Santana M, Wiedemann P, Kirmani M et al. (1984) Daunomycin in the treatment of experimental proliferative vitreoretinopathy: retinal toxicity of intravitreal daunomycin in the rabbit. Graefes Arch Clin Exp Ophthalmol 221: 210–213PubMedCrossRefGoogle Scholar
  26. 26.
    Schuettauf F, Eibl KH, Thaler S et al. (2005) Toxicity study of erucylphosphocholine in a rat model. Curr Eye Res 30: 813–820PubMedCrossRefGoogle Scholar
  27. 27.
    Sundar S, Jha TK, Thakur CP et al. (2002) Oral miltefosine for Indian visceral leishmaniasis. N Engl J Med 347: 1739–1746PubMedCrossRefGoogle Scholar
  28. 28.
    Sullivan PM, Luff AM, Aylward GW (1997) Results of primary retinal reattachment surgery: a prospective audit. Eye 11: 869–871PubMedGoogle Scholar
  29. 29.
    The Retina Society Terminology Committee (1983) The classification of retinal detachment with proliferative vitreoretinopathy. Ophthalmology 90: 121–125Google Scholar
  30. 30.
    Weller M, Heimann K, Wiedemann P (1987) Cytotoxic effects of daunomycin on retinal pigment epithelium in vitro. Graefes Arch Clin Exp Ophthalmol 225: 235–238PubMedCrossRefGoogle Scholar
  31. 31.
    Wickham L, Bunce C, Wing D et al. (2007) Randomized controlled trial of combined 5-fluorouracil and low-molecular-weight heparin in the management of unselected rhegmatogenous retinal detachments undergoing primary vitrectomy. Ophthalmology 114: 698–704PubMedCrossRefGoogle Scholar
  32. 32.
    Wiedemann P, Lemmen K, Schmiedl R, Heimann K (1987) Intraocular daunorubicin for the treatment and prophylaxis of traumatic proliferative vitreoretinopathy. Am J Ophthalmol 104: 10–14PubMedGoogle Scholar
  33. 33.
    Wiedemann P, Leinung C, Hilgers RD, Heimann K (1991) Daunomycin and silicone oil for the treatment of proliferative vitreoretinopathy. Graefes Arch Clin Exp Ophthalmol 229: 150–152PubMedCrossRefGoogle Scholar
  34. 34.
    Yang CS, Khawly JA, Hainsworth DP et al. (1998) An intravitreal sustained-release triamcinolone and 5-fluorouracil codrug in the treatment of experimental proliferative vitreoretinopathy. Arch Ophthalmol 116: 69–77PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2007

Authors and Affiliations

  • K.H. Eibl
    • 1
  • G.P. Lewis
    • 2
  • K. Betts
    • 2
  • K.A. Linberg
    • 2
  • A. Gandorfer
    • 1
  • S.K. Fisher
    • 2
    • 3
  • A. Kampik
    • 1
  1. 1.Augenklinik der Ludwig-Maximilians-UniversitätMünchenDeutschland
  2. 2.Neuroscience Research InstituteUniversity of CaliforniaSanta BarbaraUSA
  3. 3.Department of Cellular Molecular and Developmental BiologyUniversity of CaliforniaSantaBarbaraUSA

Personalised recommendations