Der Ophthalmologe

, Volume 104, Issue 4, pp 336–344 | Cite as

Antiangiogene Therapie am vorderen Augenabschnitt

  • F. Bock
  • Y. König
  • T. Dietrich
  • P. Zimmermann
  • M. Baier
  • C. Cursiefen
Das therapeutische Prinzip

Zusammenfassung

Hintergrund

In den letzten Jahren wurden gewaltige Fortschritte im Verständnis neovaskulärer Erkrankungen des Auges gemacht. Neue antiangiogene Medikamente habe in die Therapie der AMD und der diabetischen Retinopathie Einzug gehalten. Ziel dieser Arbeit ist es, aktuelle und zukünftige Möglichkeiten der lokalen antiangiogenen Therapie an Hornhaut, Bindehaut und Vorderkammer aufzuzeigen.

Methoden

Literaturübersicht aus PUBMED und eigene klinische und experimentelle Daten.

Ergebnisse

Es gibt erste Erfolg versprechende Erfahrungen mit topischen Inhibitoren der Angiogenese (v. a. Bevacizumab) an der Hornhaut und Bindehaut sowie beim intrakameralen Einsatz.

Schlussfolgerungen

Neue topische antiangiogene Therapieoptionen zum lokalen Einsatz an Hornhaut und Bindehaut sind derzeit bereits off-label verfügbar und werden die Therapie angiogener Erkrankungen am vorderen Augenabschnitt deutlich verbessern.

Schlüsselwörter

Angiogenese Hemmung VEGF Hornhaut Bindehaut 

Inhibition of angiogenesis in the anterior chamber of the eye

Abstract

Background

Recent years have seen tremendous progress in our understanding of the mechanisms of neovascular diseases of the eye. Antiangiogenic treatment options are now widely used in the management of age-related maculopathy (AMD) and diabetic retinopathy. The aim of this article is to highlight some novel methods of local antiangiogenic treatment of the cornea and conjunctiva and in the anterior chamber of the eye.

Methods

The study took the form of a literature review (PUBMED) and a review of the authors’ own data.

Results

Initial experience with novel inhibitors of angiogenesis, especially bevacizumab, used locally on cornea and conjunctiva is promising. Intracameral injections of VEGF inhibitors can be used to ameliorate neovascular glaucoma.

Conclusion

Novel antiangiogenic drugs are available for topical use in the anterior segment of the eye (as off-label use) and will improve the management of neovascular diseases affecting cornea and conjunctiva and in the anterior chamber of the eye.

Keywords

Angiogenesis Inhibition of angiogenesis VEGF Cornea Conjunctiva 

Literatur

  1. 1.
    Bock F, Onderka J, Dietrich T et al. (2007) Bevacizumab is a potent inhibitor of inflammatory angiogenesis and lymphangiogenesis in the cornea. Invest Ophthalmol Vis Sci (im Druck)Google Scholar
  2. 2.
    Chen L, Hamrah P, Cursiefen C et al. (2004) Vascular Endothelial Growth Factor Receptor-3 (VEGFR-3) mediates dendritic cell migration to lymph nodes and induction of immunity to corneal transplants. Nature Medicine 10: 813–815CrossRefPubMedGoogle Scholar
  3. 3.
    Cursiefen C (2007) Immune privilege and angiogenic privilege of the cornea. Chem Immunol Allergy. 92: 50–57Google Scholar
  4. 4.
    Cursiefen C, Schlötzer-Schrehardt U, Küchle M et al. (2002) Lymphatic vessels in vascularized human corneas: immunohistochemical investigation using LYVE-1 and Podoplanin. Invest Ophthalmol Vis Sci 43: 2127–2135PubMedGoogle Scholar
  5. 5.
    Cursiefen C, Chen L, Dana MR et al. (2003) Corneal lymphangiogenesis: Evidence, mechanisms and implications for transplant immunology. Cornea 22: 273–2781CrossRefPubMedGoogle Scholar
  6. 6.
    Cursiefen C, Seitz B, Dana MR et al. (2003) Angiogenese und Lymphangiogenese in der Hornhaut: Pathogenese, Klinik und Therapieoptionen. Ophthalmologe 100: 292–299CrossRefPubMedGoogle Scholar
  7. 7.
    Cursiefen C, Rummelt C, Neuhuber W et al. (2006) Absence of blood and lymphatic vessels in the developing human cornea. Cornea 25: 722–726CrossRefPubMedGoogle Scholar
  8. 8.
    Cursiefen C, Maruyama K, Liu Y et al. (2004) Inhibition of hem- and lymphangiogenesis after normal-risk corneal transplantation by neutralizing VEGF promotes graft survival. Invest Ophthalmol Vis Sci 45: 2666–2673CrossRefPubMedGoogle Scholar
  9. 9.
    Cursiefen C, Chen L, Saint-Geniez M et al. (2006) Nonvascular VEGF receptor 3 expression by corneal epithelium maintains avascularity and vision. Proc Natl Acad Sci USA103: 11405–11410CrossRefGoogle Scholar
  10. 10.
    Cursiefen C, Seitz B, Kruse F (2005) Hornhauttransplantation: Glänzende Bilanz und viele Perspektiven. Deutsches Ärztebl 102: A-3078Google Scholar
  11. 11.
    Cursiefen C, Chen L, Borges L, Jackson D, D’Amore PA, Dana MR, Wiegand SJ, Streilein JW. Via bone marrow-derived macrophages, VEGF A mediates lymph- and hemangiogenesis in inflammatory neovascularization. J Clin Investigation 113: 1040–1050Google Scholar
  12. 12.
    Cursiefen C, Ikeda S, Nishina PM et al. (2005) Spontaneous corneal hem- and lymphangiogenesis in mice with destrin-mutation depend on VEGFR3-signaling. Am J Pathol 166: 1367–1377PubMedGoogle Scholar
  13. 13.
    Cursiefen C, Masli S, Ng TF et al. (2004) Roles of thrombospondin 1 and 2 in regulating spontaneous and induced angiogenesis in the cornea and iris. Invest Ophthalmol Vis Sci 45: 1117–1124CrossRefPubMedGoogle Scholar
  14. 14.
    Cursiefen C, Maruyama M, Jackson DG et al. (2006) Time-course of angiogenesis and lymphangiogenesis after brief corneal inflammation. Cornea 25: 443–447CrossRefPubMedGoogle Scholar
  15. 15.
    Cursiefen C, Martus P, Nguyen NX et al. (2002) Corneal neovascularization after nonmechanical versus mechanical corneal trephination for non-high-risk keratoplasty. Cornea 21: 648–652CrossRefPubMedGoogle Scholar
  16. 16.
    Cursiefen C, Wenkel H, Martus P et al. (2001) Peripheral corneal neovascularization after non-high risk-keratoplasty: influence of short- versus longtime topical steroids. Graefe’s Arch Clin Exp Ophthalmol 239: 514–521.Google Scholar
  17. 17.
    Cursiefen C, Wenkel H, Langenbucher A et al. (2001) Standardisiertes Beurteilungsschema zur semiquantitativen Analyse der kornealen Neovaskularisation mittels projizierter Hornhautphotographien. Klin Monatsbl Augenheilkd 218: 484–491CrossRefPubMedGoogle Scholar
  18. 18.
    Cursiefen C, Rummelt C, Küchle M (2000) Immunohistochemical localization of VEGF, TGFa and TGFb1 in human corneas with neovascularization. Cornea 19: 526–533CrossRefPubMedGoogle Scholar
  19. 19.
    Cursiefen C, Rummelt C, Küchle M et al. (2003) Pericyte recruitment in human corneal angiogenesis. Br J Ophthalmol 87: 101–106CrossRefPubMedGoogle Scholar
  20. 20.
    Geitzenauer W, Michels S, Prager F et al. (2006) Early effects of systemic and intravitreal bevacizumab (avastin) therapy for neovascular age-related macular degeneration. Klin Monatsbl Augenheilkd 223: 822–827CrossRefPubMedGoogle Scholar
  21. 21.
    Grisanti S, Biester S, Peters S et al. (2006) Tuebingen Bevacizumab Study Group. Intracameral bevacizumab for iris rubeosis. Am J Ophthalmol 142: 158–160CrossRefPubMedGoogle Scholar
  22. 22.
    Iliev ME, Domig D, Wolf-Schnurrbursch U (2006) Intravitreal bevacizumab (Avastin) in the treatment of neovascular glaucoma. Am J Ophthalmol 142: 1054–1056CrossRefPubMedGoogle Scholar
  23. 23.
    Jonas JB, Spandau UH, Schlichtenbrede F (2007) Intravitreal Bevacizumab for filtering surgery. Ophthalmic Res 39: 121–122CrossRefPubMedGoogle Scholar
  24. 24.
    Kahook MY, Schumann JS, Noecker RJ (2006) Needle bleb revision of encapsulated filtering bleb with bevacizumab. Ophthalmic Surg Lasers Imaging 37: 148–150PubMedGoogle Scholar
  25. 25.
    Klink T, Guthoff R, Grehn F (2006) Postoperative care after glaucoma filtration surgery. Ophthalmologe 103: 815–823CrossRefPubMedGoogle Scholar
  26. 26.
    Kria L, Ohira A, Amemiya T (1998) TNP-470 (a fungus-derived inhibitor of angiogenesis) reduces proliferation of cultured fibroblasts isolated from primary pterygia: a possible drug therapy for pterygia. Curr Eye Res 17: 986–993CrossRefPubMedGoogle Scholar
  27. 27.
    Kuhlmann A, Amann K, Schlötzer-Schrehardt U (2005) Endothelin-1 and Eta/Etb-receptor expression in normal & vascularized human cornea. Cornea 24: 837–844CrossRefPubMedGoogle Scholar
  28. 28.
    Manzano R et al. (2007) Inhibition of experimental corneal neovascularization by Bevacizumab (AVASTIN). Br J Ophthalmol (in press)Google Scholar
  29. 29.
    Maruyama K, Li M, Cursiefen C et al. (2005) Inflammatory lymphangiogenesis arises from CD11b+ cells. J Clin Invest 115: 2363–2372CrossRefPubMedGoogle Scholar
  30. 30.
    Nguyen N, Seitz B, Langenbucher A et al. (2004) Clinical aspects and treatment of immune reactions following penetrating normal-risk keratoplasty. Klin Monatsbl Augenheilkd 221: 467–472CrossRefPubMedGoogle Scholar
  31. 31.
    Pillai CT, Dua HS, Hossain P (2000) Fine needle diathermy occlusion of corneal vessels. Invest Ophthalmol Vis Sci 41: 2148–2153PubMedGoogle Scholar
  32. 32.
    Shaunak S, Thomas S, Gianasi E et al. (2004) Polyvalent dendrimer glucosamine conjugates prevent scar tissue formation. Nat Biotechnol 22: 977–984CrossRefPubMedGoogle Scholar
  33. 33.
    Shojaei F, Ferrara N (2007) Antiangiogenesis to treat cancer and intraocular neovascular disorders. Lab Invest (Epub ahead of print)Google Scholar
  34. 34.
    Vinh L, Nguyen N, Martus P (2006) Surgery-related factors influencing corneal neovascularization after low-risk keratoplasty. Am J Ophthalmol 141: 260–266CrossRefPubMedGoogle Scholar
  35. 35.
    Wong J, Wang N, Miller JW (1994) Modulation of human fibroblast activity by selected angiogenesis inhibitors. Exp Eye Res 58: 439–451CrossRefPubMedGoogle Scholar
  36. 36.
    Yeoh J, Sims J, Guymer RH (2006) A review of drug options in age-related macular degeneration therapy and potential new agents. Expert Opin Pharmacother 7: 2355–2368CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2007

Authors and Affiliations

  • F. Bock
    • 1
  • Y. König
    • 1
  • T. Dietrich
    • 1
  • P. Zimmermann
    • 1
  • M. Baier
    • 2
  • C. Cursiefen
    • 1
  1. 1.Augenklinik mit Poliklinik, Friedrich-Alexander-Universität Erlangen NürnbergErlangenDeutschland
  2. 2.Klinikumsapotheke, Friedrich-Alexander-Universität Erlangen NürnbergErlangenDeutschland

Personalised recommendations