Der Ophthalmologe

, Volume 104, Issue 1, pp 21–27 | Cite as

Wirksamkeit neuer Fluorchinolone gegenüber der bakteriellen Normalflora der Bindehaut

  • M. J. Koss
  • M. Eder
  • M. S. Blumenkranz
  • V. Klauss
  • C. N. Ta
  • H. M. de Kaspar
Leitthema

Zusammenfassung

Hintergrund

25 Antibiotika einschließlich der neuen Fluorchinolone Levofloxacin, Gatifloxacin und Moxifloxacin wurden gegenüber der bakteriellen Normalflora der Bindehaut getestet.

Patienten und Methoden

Es wurden Bindehautabstriche bei insgesamt 160 Patienten (Median: 74 Jahre, Mittelwert: 71 Jahre) der Universitätsaugenklinik Stanford/USA vor Kataraktoperation abgenommen. Die daraus kultivierten Bakterienstämme wurden auf ihre antibiotische In-vitro-Empfindlichkeit mit dem Agardiffusionstest nach Kirby-Bauer getestet.

Ergebnisse

Von 256 isolierten Bakterienstämmen waren 201 (79%) koagulasenegative Staphylokokken (KNS), 26 Staphylococcus aureus, 15 Streptokokken der Gruppe D sowie 14 gramnegative Stäbchen. 100 der 256 Stämme (39%) wurden als multiresistent (resistent gegen mehr als 5 Antibiotika) eingestuft. Die aufsteigende Reihenfolge der Resistenzrate (RR) der KNS betrug: Gatifloxacin=Moxifloxacin<Gentamycin=Tobramycin=Levofloxacin=Neomycin<Ciprofloxacin=Ofloxacin<Erythromycin. Die RR von Staphylococcus aureus und der gramnegativen Stäbchen war niedrig und wies bezüglich der getesteten Antibiotika untereinander keine signifikanten Unterschiede auf. Die Streptokokken der Gruppe D wiesen insgesamt eine hohe Resistenzrate (RR über 30%) gegenüber den Antibiotika mit Ausnahme von Gatifloxacin, Levofloxacin oder Moxifloxacin auf. Bei allen Bakterien wurden hohe Resistenzraten (50%) gegenüber Erythromycin nachgewiesen.

Schlussfolgerungen

Trotz einer hohen Prävalenz multiresistenter Bakterienstämme zeigten die Fluorchinolone der neuen Generation eine außerordentlich hohe Wirksamkeit gegenüber den koagulasenegativen Staphylokokken und den Streptokokken der Gruppe D.

Schlüsselwörter

Konjunktivale Bakterien Fluorchinolone Kirby-Bauer Resistenzmuster 

The effectiveness of the new fluoroquinolones against the normal bacterial flora of the conjunctiva

Abstract

Background

Our aim was to determine the antibiotic susceptibility of the preoperative conjunctival bacterial flora against 25 commonly used antibiotics, especially the new fluoroquinolones levofloxacin, gatifloxacin, and moxifloxacin.

Patients and Methods

The Kirby-Bauer disk-diffusion technique was used to test for the in vitro antibiotic susceptibility of conjunctival bacterial strains isolated from 160 patients (median=74 years, mean=71 years) undergoing cataract surgery at the Department of Ophthalmology, Stanford University, CA, USA.

Results

Among the 256 bacteria isolated, 201 (79%) were coagulase-negative staphylococci (CNS), 26 Staphylococcus aureus, 15 Streptococcus group D and 14 gram-negative rods. A total of 100 of these 256 strains (39%) were classified as multiresitant (resistant to ≥ five antibiotics). The resistance rate (RR) of commonly used antibiotics for all CNS was: gatifloxacin=moxifloxacin<gentamycin=tobramycin=levofloxacin=neomycin<ciprofloxacin=ofloxacin<erythromycin. The RR for S. aureus and the gram-negative rods was low and insignificant in comparison to the other antibiotics tested. None of the Streptococcus group D were resistant to gatifloxacin, levofloxacin, or moxifloxacin, however, they were highly resistant (RR over 30%) to the other antibiotics. Some 50% of the bacteria were resistant to erythromycin.

Conclusion

Newer generation fluoroquinolones provide excellent efficacy against coagulase-negative staphylococci and Streptococcus group D despite a high number of multiresitant bacteria.

Keywords

Conjunctival bacteria Fluoroquinolone Kirby-Bauer Resistance pattern 

Notes

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Literatur

  1. 1.
    Alexandrakis G, Alfonso EC,Miller D (2000) Shifting trends in bacterial keratitis in south Florida and emerging resistance to fluoroquinolones. Ophthalmology 107: 1497–502CrossRefPubMedGoogle Scholar
  2. 2.
    Barry P, Seal DV, Gettinby G et al. (2006) ESCRS study of prophylaxis of postoperative endophthalmitis after cataract surgery: Preliminary report of principal results from a European multicenter study. J Cataract Refract Surg 32: 407–410CrossRefPubMedGoogle Scholar
  3. 3.
    Bauer AW, Kirby WM, Sherris JC et al. (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45: 493–496PubMedGoogle Scholar
  4. 4.
    Ciulla TA, Starr MB, Masket S (2002) Bacterial endophthalmitis prophylaxis for cataract surgery: an evidence-based update. Ophthalmology 109: 13–24CrossRefPubMedGoogle Scholar
  5. 5.
    Drlica K (1999) Mechanism of fluoroquinolone action. Curr Opin Microbiol 2: 504–508CrossRefPubMedGoogle Scholar
  6. 6.
    Drlica K (2000) The future of fluoroquinolones. Ann Med 32: 585–587PubMedGoogle Scholar
  7. 7.
    Drlica K,Malik M (2003) Fluoroquinolones: action and resistance. Curr Top Med Chem 3: 249–282CrossRefPubMedGoogle Scholar
  8. 8.
    Garcia-Saenz MC,Arias-Puente A,Fresnadillo-Martinez MJ,Carrasco-Font C (2001) Human aqueous humor levels of oral ciprofloxacin, levofloxacin, and moxifloxacin. J Cataract Refract Surg 27: 1969–1974CrossRefPubMedGoogle Scholar
  9. 9.
    Goldstein MH, Kowalski RP, Gordon YJ (1999) Emerging fluoroquinolone resistance in bacterial keratitis: a 5-year review. Ophthalmology 106: 1313–1318PubMedGoogle Scholar
  10. 10.
    Grasbon T, Mino de Kaspar H, Klauss V (1995) [Coagulase-negative staphylococci in normal and chronically inflamed conjunctiva]. Ophthalmologe 92: 793–801PubMedGoogle Scholar
  11. 11.
    Graves A, Henry M, O’Brien TP et al. (2001) In vitro susceptibilities of bacterial ocular isolates to fluoroquinolones. Cornea 20: 301–305CrossRefPubMedGoogle Scholar
  12. 12.
    Huebner J, Goldmann DA (1999) Coagulase-negative staphylococci: role as pathogens. Annu Rev Med 50: 223–236CrossRefPubMedGoogle Scholar
  13. 13.
    Karow T, Lang R (2001) Antibiotika. Journal 533–567Google Scholar
  14. 14.
    Kowalski RP, Romanowski EG,Yates KA et al. (2001) Lomefloxacin is an effective treatment of experimental bacterial keratitis. Cornea 20: 306–308CrossRefPubMedGoogle Scholar
  15. 15.
    Kowalski RP, Yates KA, Romanowski EG et al. (2005) An ophthalmologist’s guide to understanding antibiotic susceptibility and minimum inhibitory concentration data. Ophthalmology 112: 1987CrossRefPubMedGoogle Scholar
  16. 16.
    Kurokawa N, Hayashi K, Konishi M et al. (2002) Increasing ofloxacin resistance of bacterial flora from conjunctival sac of preoperative ophthalmic patients in Japan. Jpn J Ophthalmol 46: 586–589CrossRefPubMedGoogle Scholar
  17. 17.
    Leong JK, Shah R, McCluskey PJ et al. (2002) Bacterial contamination of the anterior chamber during phacoemulsification cataract surgery. J Cataract Refract Surg 28: 826–833CrossRefPubMedGoogle Scholar
  18. 18.
    Liesegang TJ (2001) Use of antimicrobials to prevent postoperative infection in patients with cataracts. Curr Opin Ophthalmol 12: 68–74PubMedGoogle Scholar
  19. 19.
    Marians KJ, Hiasa H (1997) Mechanism of quinolone action. A drug-induced structural perturbation of the DNA precedes strand cleavage by topoisomerase IV. J Biol Chem 272: 9401–9409CrossRefPubMedGoogle Scholar
  20. 20.
    Masket S (1998) Preventing, diagnosing, and treating endophthalmitis. J Cataract Refract Surg 24: 725–726PubMedGoogle Scholar
  21. 21.
    Mather R, Karenchak LM, Romanowski EG et al. (2002) Fourth generation fluoroquinolones: new weapons in the arsenal of ophthalmic antibiotics. Am J Ophthalmol 133: 463–466PubMedGoogle Scholar
  22. 22.
    Mino De Kaspar H, Kollmann M, Klauss V (1993) Endophthalmitis; Bedeutung mikrobiologischer Untersuchungen für Therapie und Prognose. Ophthalmologe 90: 726–7336PubMedGoogle Scholar
  23. 23.
    Mino de Kaspar H, Koss MJ, He L et al. (2005) Antibiotic susceptibility of preoperative normal conjunctival bacteria. Am J Ophthalmol 139: 730–733CrossRefPubMedGoogle Scholar
  24. 24.
    Mino de Kaspar H, Neubauer AS, Molnar A et al. (2002) Rapid direct antibiotic susceptibility testing in endophthalmitis. Ophthalmology 109: 687–693CrossRefPubMedGoogle Scholar
  25. 25.
    Mino De Kaspar H, Hoepfner AS, Engelbert M et al. (2001) Antibiotic resistance pattern and visual outcome in experimentally-induced Staphylococcus epidermidis endophthalmitis in a rabbit model. Ophthalmology 108: 470–478CrossRefPubMedGoogle Scholar
  26. 26.
    Pinna A, Sechi LA, Zanetti S et al. (2001) Bacillus cereus keratitis associated with contact lens wear. Ophthalmology 108: 1830–1804CrossRefPubMedGoogle Scholar
  27. 27.
    Schaefer F, Bruttin O, Zografos L et al. (2001) Bacterial keratitis: a prospective clinical and microbiological study. Br J Ophthalmol 85: 842–847CrossRefPubMedGoogle Scholar
  28. 28.
    Speaker MG, Milch FA, Shah MK et al. (1991) Role of external bacterial flora in the pathogenesis of acute postoperative endophthalmitis. Ophthalmology 98: 639–49; discussion 650PubMedGoogle Scholar
  29. 29.
    Standards NCfCL (2000) Methods for dilution antimicrobials susceptibility tests for bacteria that grow aerobiacally. Journal 20: approved standard (document M7-A5)Google Scholar
  30. 30.
    Ta CN, He L, Nguyen E et al. (2006) Prospective randomized study determining whether a 3-day application of ofloxacin results in the selection of fluoroquinolone-resistant coagulase-negative Staphylococcus. Eur J Ophthalmol 16: 359–364PubMedGoogle Scholar
  31. 31.
    Ta CN, Egbert PR, Singh K et al. (2002) Prospective randomized comparison of 3-day versus 1-hour preoperative ofloxacin prophylaxis for cataract surgery. Ophthalmology 109: 2036–40; discussion 2040–2041CrossRefPubMedGoogle Scholar
  32. 32.
    Ta CN, Chang RT, Singh K et al. (2003) Antibiotic resistance patterns of ocular bacterial flora: a prospective study of patients undergoing anterior segment surgery. Ophthalmology 110: 1946–1951CrossRefPubMedGoogle Scholar
  33. 33.
    Tenover F, Hughes J (1996) The challenge of emerging infectious diseases: development and spread of multiply-resistant bacterial pathogens. JAMA 300–304Google Scholar
  34. 34.
    Willmott CJ, Maxwell A (1993) A single point mutation in the DNA gyrase A protein greatly reduces binding of fluoroquinolones to the gyrase-DNA complex. Antimicrob Agents Chemother 37: 126–127PubMedGoogle Scholar
  35. 35.
    Yamada M, Mochizuki H, Yamada K et al. (2002) Aqueous humor levels of topically applied levofloxacin in human eyes. Curr Eye Res 24: 403–406CrossRefPubMedGoogle Scholar
  36. 36.
    Yolton JD (2001) Antiinfective Drugs. Journal 11: 219–264Google Scholar

Copyright information

© Springer Medizin Verlag 2006

Authors and Affiliations

  • M. J. Koss
    • 1
    • 3
  • M. Eder
    • 1
  • M. S. Blumenkranz
    • 2
  • V. Klauss
    • 1
  • C. N. Ta
    • 2
  • H. M. de Kaspar
    • 1
    • 2
  1. 1.Universitätsaugenklinik der Ludwig-Maximilians-Universität München
  2. 2.Department of OphthalmologySchool of Medicine, Stanford University
  3. 3.Zentrum für Augenheilkunde, Universitätsklinikum der Johann-Wolfgang-Goethe-UniversitätFrankfurt

Personalised recommendations