Advertisement

Der Ophthalmologe

, Volume 102, Issue 11, pp 1029–1035 | Cite as

Y402H-Polymorphismus im Komplementfaktor H und altersabhängige Makuladegeneration (AMD)

  • H. P. N. SchollEmail author
  • B. H. F. Weber
  • M. M. Nöthen
  • T. Wienker
  • F. G. Holz
Leitthema

Zusammenfassung

Die altersabhängige Makuladegeneration (AMD) ist eine genetisch komplexe Erkrankung. Neuere Untersuchungen legen nahe, dass sie zu mehr als zwei Dritteln auf genetische Ursachen zurückzuführen ist. Umfangreiche molekulargenetische Studien (Kandidatengenanalysen, Kopplungsanalysen und Assoziationsstudien) wurden in den letzten Jahren durchgeführt, um die genetischen Faktoren einer AMD-Prädisposition auf molekularer Ebene zu beschreiben. Kürzlich ist es nun gelungen, im Komplementfaktor-H- (CFH-)Gen ein hochsignifikantes Risikoallel, Y402H, zu identifizieren. Das relative Risiko für die Entwicklung einer AMD wird auf 2,4–4,6 für heterozygote Träger des Risikoallels geschätzt und auf 3,3–7,4 für Homozygote. Dieser Polymorphismus trägt demnach etwa 20–50% zum AMD-Gesamtrisiko bei und erklärt somit einen wesentlichen Teil des genetischen Beitrags. Dieser Übersichtsartikel berichtet über den Stand der genetischen Forschung zur AMD und stellt die neuen Ergebnisse zum CFH-Gen dar.

Schlüsselwörter

Altersabhängige Makuladegeneration (AMD) Komplementfaktor H Sequenzvarianten Assoziationsstudien 

Y402H polymorphism in complement factor H and age-related macula degeneration (AMD)

Abstract

Age-related macular degeneration is a complex genetic disorder. Recent data suggest that the additive genetic risk for late-stage disease is more than two-thirds. Comprehensive genetic studies (candidate gene approaches, linkage and association studies) have been performed in recent years to identity the genetic risk factors at the molecular lavel. Very recently, a significant risk allele, Y402H, has been discovered in the complement factor H (CFH) gene. The relative risk of developing AMD has been estimated between 2.4–4.6 for heterozygotes and 3.3–7.4 for homozygotes. This polymorphism accounts for approximately 20–50% of the overall risk of developing AMD. In this review the results from molecular genetic studies in AMD are summarized, with a special emphasis on the recent data obtained for the CFH gene.

Keywords

Age-related macular degeneration Complement factor H Sequence variation Association studies 

Notes

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Literatur

  1. 1.
    Abecasis GR, Yashar BM, Zhao Y et al. (2004) Age-related macular degeneration: a high-resolution genome scan for susceptibility loci in a population enriched for late-stage disease. Am J Hum Genet 74:482–494PubMedGoogle Scholar
  2. 2.
    Allikmets R, Shroyer NF, Singh N et al. (1997) Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science 277:1805–1807Google Scholar
  3. 3.
    Allikmets R, Seddon JM, Bernstein PS et al. (1999) Evaluation of the Best disease gene in patients with age-related macular degeneration and other maculopathies. Hum Genet 104:449–453PubMedGoogle Scholar
  4. 4.
    Attebo K, Mitchell P, Smith W (1996) Visual acuity and the causes of visual loss in Australia. The Blue Mountains Eye Study. Ophthalmology 103:357–364PubMedGoogle Scholar
  5. 5.
    Ayyagari R, Zhang K, Hutchinson A et al. (2001) Evaluation of the ELOVL4 gene in patients with age-related macular degeneration. Ophthalmic Genet 22:233–239PubMedGoogle Scholar
  6. 6.
    Bressler NM, Bressler SB, West SK, Fine SL, Taylor HR (1989) The grading and prevalence of macular degeneration in Chesapeake Bay watermen. Arch Ophthalmol 107:847–852PubMedGoogle Scholar
  7. 7.
    Cichon S, Freudenberg J, Nöthen MM, Propping P (2002) Variabilität im menschlichen Genom: Bedeutung für die Krankheitsforschung. Dtsch Ärztebl A3091–3101Google Scholar
  8. 8.
    Conley YP, Thalamuthu A, Jakobsdottir J, Weeks DE, Mah T, Ferrell RE, Gorin MB (2005) Candidate gene analysis suggests a role for fatty acid biosynthesis and regulation of the complement system in the etiology of age-related maculopathy. Hum Mol Genet 14:1991–2002PubMedGoogle Scholar
  9. 9.
    Daiger SP (2005) Genetics. Was the human genome project worth the effort? Science 308:362–364Google Scholar
  10. 10.
    De Jong PT, Klaver CC, Wolfs RC, Assink JJ, Hofman A (1997) Familial aggregation of age-related maculopathy. Am J Ophthalmol 124:862–863PubMedGoogle Scholar
  11. 11.
    Edwards AO, Ritter R, Abel KJ, Manning A, Panhuysen C, Farrer LA (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308:421–424Google Scholar
  12. 12.
    Esparza-Gordillo J, Soria JM, Buil A, Almasy L, Blangero J, Fontcuberta J, Rodriguez de CS (2004) Genetic and environmental factors influencing the human factor H plasma levels. Immunogenetics 56:77–82PubMedGoogle Scholar
  13. 13.
    Evans JR (2001) Risk factors for age-related macular degeneration. Prog Retin Eye Res 20:227–253PubMedGoogle Scholar
  14. 14.
    Felbor U, Doepner D, Schneider U, Zrenner E, Weber BH (1997) Evaluation of the gene encoding the tissue inhibitor of metalloproteinases-3 in various maculopathies. Invest Ophthalmol Vis Sci 38:1054–1059PubMedGoogle Scholar
  15. 15.
    Fisher SA, Abecasis GR, Yashar BM et al. (2005) Meta-analysis of genome scans of age-related macular degeneration. Hum Mol Genet 14:2257–2264PubMedGoogle Scholar
  16. 16.
    Freudenberg J, Cichon S, Nöthen MM, Propping P (2002) Die neu entdeckte Blockstruktur des menschlichen Genoms. Ein Organisationsprinzip der genetischen Variabilität. Dtsch Ärztebl A3190–3195Google Scholar
  17. 17.
    Gass JD (1973) Drusen and disciform macular detachment and degeneration. Arch Ophthalmol 90:206–217PubMedGoogle Scholar
  18. 18.
    Gorin MB, Breitner JC, de Jong PT, Hageman GS, Klaver CC, Kuehn MH, Seddon JM (1999) The genetics of age-related macular degeneration. Mol Vis 5:29PubMedGoogle Scholar
  19. 19.
    Hageman GS, Luthert PJ, Chong NHV, Johnson LV, Anderson DH, Mullins RF (2001) An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res 20:705–732PubMedGoogle Scholar
  20. 20.
    Hageman GS, Anderson DH, Johnson LV et al. (2005) A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci USA 102:7227–7232CrossRefPubMedGoogle Scholar
  21. 21.
    Haines JL, Hauser MA, Schmidt S et al. (2005) Complement factor H variant increases the risk of age-related macular degeneration. Science 308:419–421Google Scholar
  22. 22.
    Heiba IM, Elston RC, Klein BE, Klein R (1994) Sibling correlations and segregation analysis of age-related maculopathy: the Beaver Dam Eye Study. Genet Epidemiol 11:51–67PubMedGoogle Scholar
  23. 23.
    Hekimi S, Guarente L (2003) Genetics and the specificity of the aging process. Science 299:1351–1354Google Scholar
  24. 24.
    Hyman LG, Lilienfeld AM, Ferris FL, Fine SL (1983) Senile macular degeneration: a case-control study. Am J Epidemiol 118:213–227PubMedGoogle Scholar
  25. 25.
    Iyengar SK, Song D, Klein BE et al. (2004) Dissection of genomewide-scan data in extended families reveals a major locus and oligogenic susceptibility for age-related macular degeneration. Am J Hum Genet 74:20–39CrossRefPubMedGoogle Scholar
  26. 26.
    Johnson LV, Leitner WP, Staples MK, Anderson DH (2001) Complement activation and inflammatory processes in Drusen formation and age related macular degeneration. Exp Eye Res 73:887–896PubMedGoogle Scholar
  27. 27.
    Klaver CC, Kliffen M, van Duijn CM et al. (1998) Genetic association of apolipoprotein E with age-related macular degeneration. Am J Hum Genet 63:200–206PubMedGoogle Scholar
  28. 28.
    Klaver CC, Wolfs RC, Assink JJ, van Duijn CM, Hofman A, de Jong PT (1998) Genetic risk of age-related maculopathy. Population-based familial aggregation study. Arch Ophthalmol 116:1646–1651PubMedGoogle Scholar
  29. 29.
    Klein BE, Klein R, Linton KL (1992) Prevalence of age-related lens opacities in a population. The Beaver Dam Eye Study. Ophthalmology 99:546–552PubMedGoogle Scholar
  30. 30.
    Klein ML, Schultz DW, Edwards A et al. (1998) Age-related macular degeneration. Clinical features in a large family and linkage to chromosome 1q. Arch Ophthalmol 116:1082–1088PubMedGoogle Scholar
  31. 31.
    Klein R, Klein BE, Tomany SC, Meuer SM, Huang GH (2002) Ten-year incidence and progression of age-related maculopathy: The Beaver Dam eye study. Ophthalmology 109:1767–1779PubMedGoogle Scholar
  32. 32.
    Klein RJ, Zeiss C, Chew EY et al. (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308:385–389Google Scholar
  33. 33.
    Kramer F, White K, Pauleikhoff D et al. (2000) Mutations in the VMD2 gene are associated with juvenile-onset vitelliform macular dystrophy (Best disease) and adult vitelliform macular dystrophy but not age-related macular degeneration. Eur J Hum Genet 8:286–292PubMedGoogle Scholar
  34. 34.
    Lotery AJ, Munier FL, Fishman GA et al. (2000) Allelic variation in the VMD2 gene in best disease and age-related macular degeneration. Invest Ophthalmol Vis Sci 41:1291–1296PubMedGoogle Scholar
  35. 35.
    Majewski J, Schultz DW, Weleber RG et al. (2003) Age-related macular degeneration — a genome scan in extended families. Am J Hum Genet 73:540–550PubMedGoogle Scholar
  36. 36.
    Mitchell P, Smith W, Attebo K, Wang JJ (1995) Prevalence of age-related maculopathy in Australia. The Blue Mountains Eye Study. Ophthalmology 102:1450–1460PubMedGoogle Scholar
  37. 37.
    Mullins RF, Russell SR, Anderson DH, Hageman GS (2000) Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J 14:835–846PubMedGoogle Scholar
  38. 38.
    Ozaki K, Ohnishi Y, Iida A et al. (2002) Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction. Nat Genet 32:650–654CrossRefPubMedGoogle Scholar
  39. 39.
    Rivera A, White K, Stohr H et al. (2000) A comprehensive survey of sequence variation in the ABCA4 (ABCR) gene in Stargardt disease and age-related macular degeneration. Am J Hum Genet 67:800–813PubMedGoogle Scholar
  40. 40.
    Rodriguez de CS, Esparza-Gordillo J, Goicoechea de JE, Lopez-Trascasa M, Sanchez-Corral P (2004) The human complement factor H: functional roles, genetic variations and disease associations. Mol Immunol 41:355–367PubMedGoogle Scholar
  41. 41.
    Sauer CG, White K, Stohr H et al. (2001) Evaluation of the G protein coupled receptor-75 (GPR75) in age related macular degeneration. Br J Ophthalmol 85:969–975PubMedGoogle Scholar
  42. 42.
    Schick JH, Iyengar SK, Klein BE et al. (2003) A whole-genome screen of a quantitative trait of age-related maculopathy in sibships from the Beaver Dam Eye Study. Am J Hum Genet 72:1412–1424PubMedGoogle Scholar
  43. 43.
    Schmidt S, Saunders AM, De La Paz MA et al. (2000) Association of the apolipoprotein E gene with age-related macular degeneration: possible effect modification by family history, age, and gender. Mol Vis 6:287–293PubMedGoogle Scholar
  44. 44.
    Schmidt S, Klaver C, Saunders A et al. (2002) A pooled case-control study of the apolipoprotein E (APOE) gene in age-related maculopathy. Ophthalmic Genet 23:209–223PubMedGoogle Scholar
  45. 45.
    Seddon JM, Ajani UA, Mitchell BD (1997) Familial aggregation of age-related maculopathy. Am J Ophthalmol 123:199–206PubMedGoogle Scholar
  46. 46.
    Seddon JM, Santangelo SL, Book K, Chong S, Cote J (2003) A genomewide scan for age-related macular degeneration provides evidence for linkage to several chromosomal regions. Am J Hum Genet 73:780–790PubMedGoogle Scholar
  47. 47.
    Seddon JM, Gensler G, Milton RC, Klein ML, Rifai N (2004) Association between C-reactive protein and age-related macular degeneration. JAMA 291:704–710PubMedGoogle Scholar
  48. 48.
    Seddon JM, Cote J, Page WF, Aggen SH, Neale MC (2005) The US twin study of age-related macular degeneration: relative roles of genetic and environmental influences. Arch Ophthalmol 123:321–327PubMedGoogle Scholar
  49. 49.
    Shastry BS, Trese MT (1999) Evaluation of the peripherin/RDS gene as a candidate gene in families with age-related macular degeneration. Ophthalmologica 213:165–170PubMedGoogle Scholar
  50. 50.
    Silvestri G (1997) Age-related macular degeneration: genetics and implications for detection and treatment. Mol Med Today 3:84–91PubMedGoogle Scholar
  51. 51.
    Stone EM, Webster AR, Vandenburgh K, Streb LM, Hockey RR, Lotery AJ, Sheffield VC (1998) Allelic variation in ABCR associated with Stargardt disease but not age-related macular degeneration. Nat Genet 20:328–329PubMedGoogle Scholar
  52. 52.
    Stone EM, Braun TA, Russell SR et al. (2004) Missense variations in the fibulin 5 gene and age-related macular degeneration. N Engl J Med 351:346–353PubMedGoogle Scholar
  53. 53.
    Stone EM, Lotery AJ, Munier FL et al. (1999) A single EFEMP1 mutation associated with both Malattia Leventinese and Doyne honeycomb retinal dystrophy. Nat Genet 22:199–202PubMedGoogle Scholar
  54. 54.
    Vingerling JR, Dielemans I, Hofman A, Grobbee DE, Hijmering M, Kramer CF, de Jong PT (1995) The prevalence of age-related maculopathy in the Rotterdam Study. Ophthalmology 102:205–210PubMedGoogle Scholar
  55. 55.
    Vingerling JR, Klaver CC, Hofman A, de Jong PT (1995) Epidemiology of age-related maculopathy. Epidemiol Rev 17:347–360PubMedGoogle Scholar
  56. 56.
    Weeks DE, Conley YP, Mah TS et al. (2000) A full genome scan for age-related maculopathy. Hum Mol Genet 9:1329–1349PubMedGoogle Scholar
  57. 57.
    Weeks DE, Conley YP, Tsai HJ et al. (2001) Age-related maculopathy: an expanded genome-wide scan with evidence of susceptibility loci within the 1q31 and 17q25 regions. Am J Ophthalmol 132:682–692PubMedGoogle Scholar
  58. 58.
    Weeks DE, Conley YP, Tsai HJ et al. (2004) Age-related maculopathy: a genomewide scan with continued evidence of susceptibility loci within the 1q31, 10q26, and 17q25 regions. Am J Hum Genet 75:174–189PubMedGoogle Scholar
  59. 59.
    White K, Marquardt A, Weber BH (2000) VMD2 mutations in vitelliform macular dystrophy (Best disease) and other maculopathies. Hum Mutat 15:301–308PubMedGoogle Scholar
  60. 60.
    Yates JR, Moore AT (2000) Genetic susceptibility to age related macular degeneration. J Med Genet 37:83–87PubMedGoogle Scholar
  61. 61.
    Yoshida S, Yashar BM, Hiriyanna S, Swaroop A (2002) Microarray analysis of gene expression in the aging human retina. Invest Ophthalmol Vis Sci 43:2554–2560PubMedGoogle Scholar
  62. 62.
    Zareparsi S, Branham KE, Li M et al. (2005) Strong association of the Y402H variant in complement factor H at 1q32 with susceptibility to age-related macular degeneration. Am J Hum Genet 77:149–153PubMedGoogle Scholar
  63. 63.
    Zareparsi S, Buraczynska M, Branham KE et al. (2005) Toll-like receptor 4 variant D299G is associated with susceptibility to age-related macular degeneration. Hum Mol Genet 14:1449–1455PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2005

Authors and Affiliations

  • H. P. N. Scholl
    • 1
    • 5
    Email author
  • B. H. F. Weber
    • 2
  • M. M. Nöthen
    • 3
  • T. Wienker
    • 4
  • F. G. Holz
    • 1
  1. 1.AugenklinikUniversitätBonn
  2. 2.Institut für HumangenetikUniversitätRegensburg
  3. 3.Abteilung für GenomikForschungszentrum Life & Brain der UniversitätBonn
  4. 4.Institut für Medizinische Biometrie und Informatik und EpidemiologieUniversitätBonn
  5. 5.AugenklinikUniversitätBonn

Personalised recommendations