Der Ophthalmologe

, Volume 100, Issue 11, pp 929–942

Augen-assoziiertes lymphatisches Gewebe (EALT) durchzieht die Augenoberfläche kontinuierlich von der Tränendrüse bis in die ableitenden Tränenwege

Leitthema

Zusammenfassung

Hintergrund

Komponenten des Schleimhautimmunsystems (MALT) für die Intakterhaltung der Augenoberfläche befinden sich neben der Tränendrüse auch in der Konjunktiva (als CALT) und den ableitenden Tränenwegen (als LDALT). Ihr struktureller und funktioneller Zusammenhang ist allerdings noch ungeklärt.

Material und Methode

Es wurden normale Gewebe der Konjunktiva, der ableitenden Tränenwege und der Tränendrüse mittels Betrachtung von Aufhellungspräparaten, Histologie, Immunhistologie sowie Raster- und Transmissionselektronenmikroskopie untersucht.

Ergebnisse

Ein typisches diffuses lymphatisches Gewebe aus Effektorzellen des Immunsystems unter einem Epithel, das den IgA-Transporter SC enthält, liegt nicht isoliert in der Konjunktiva und den ableitenden Tränenwegen vor. Es verläuft anatomisch kontinuierlich vom periazinösen Bindegewebe der Tränendrüse entlang ihrer Ausführungsgänge in die Konjunktiva und setzt sich in den ableitenden Tränenwegen bis zur Nase fort. B-Lymphozyten wurden fast ausschließlich in Lymphfollikeln gefunden, die einer der Mehrzahl der Präparate seitengleich auftraten. Die Topographie von CALT korrespondiert mit der Position der Kornea bei geschlossenem Auge.

Schlussfolgerung

Das schleimhautassoziierte lymphatische Gewebe von Tränendrüse, Konjunktiva und ableitenden Tränenwegen bildet eine anatomische und funktionelle Einheit zur Immunprotektion der Augenoberfläche. Daher ist es als „Eye-Associated Lymphoid Tissue“ (EALT) in das Schleimhautimmunsystem des Körpers einzuordnen. EALT kann über Lymphfollikel Antigene der Augenoberfläche erkennen und über die regulierte Rezirkulation lymphatischer Zellen andere Organe sowie die Augenoberfläche einschließlich der Tränendrüse mit spezifischen Effektorzellen versorgen.

Schlüsselwörter

Augen-assoziiertes lymphatisches Gewebe (EALT) Tränendrüse Ableitende Tränenwege Immunprotektion 

Abstract

Introduction

Components of the mucosal immune system (MALT) have been identified in the conjunctiva (as CALT) and the lacrimal drainage system (as LDALT). Their structural and functional relation with the established immune protection by the lacrimal gland is unclear.

Material and methods

Macroscopically normal and complete tissues of the conjunctiva, lacrimal drainage system and lacrimal gland from human body donors were investigated by analysis of translucent whole mounts, and using histology, immunohistology as well as scanning and transmission electron microscopy.

Results

A typical diffuse lymphoid tissue, composed of effector cells of the immune system (T-lymphocytes and IgA producing plasma cells) under an epithelium that contains the IgA transporter SC, is not isolated in the conjunctiva and lacrimal drainage system. It is anatomically continuous from the lacrimal gland along its excretory ducts into the conjunctiva and from there via the lacrimal canaliculi into the lacrimal drainage system. Lymphoid follicles occur in a majority (about 60%) and with bilateral symmetry. The topography of CALT corresponds to the position of the cornea in the closed eye.

Conclusion

These results show that the MALT of the lacrimal gland, conjunctiva and lacrimal drainage system constitute an anatomical and functional unit for immune protection of the ocular surface. Therefore it should be integrated as an “eye-associated lymphoid tissue” (EALT) into the MALT system of the body. EALT can detect ocular surface antigens by the lymphoid follicles and can supply other organs and the ocular surface including the lacrimal gland with specific effector cells via the regulated recirculation of lymphoid cells.

Keywords

Eye-associated lymphoid tissue (EALT) Lacrimal glands Conjunctiva Lacrimal drainage system Immune protection 

Literatur

  1. 1.
    Allansmith MR, Greiner JV, Baird RS (1978) Number of inflammatory cells in the normal conjunctiva. Am J Ophthalmol 86:250–259PubMedGoogle Scholar
  2. 2.
    Allansmith MR, Hahn GS, Simon MA (1976) Tissue, tear, and serum IgE concentrations in vernal conjunctivitis. Am J Ophthalmol 81:506–511PubMedGoogle Scholar
  3. 3.
    Augustin AJ, Spitznas M, Kaviani N et al. (1995) Oxidative reactions in the tear fluid of patients suffering from dry eyes. Graefes Arch Clin Exp Ophthalmol 233:694–698PubMedGoogle Scholar
  4. 4.
    Axelrod AJ, Chandler JW (1979) Morphologic characteristics of conjunctival lymphoid tissue in the rabbit. In: Silverstein AM, Connor GR (eds) Proceedings of the Second International Symposium on the Immunology and Immunopathology of the Eye. Masson Publishing, New York, pp 292–301Google Scholar
  5. 5.
    Barton K, Monroy DC, Nava A, Pflugfelder SC (1997) Inflammatory cytokines in the tears of patients with ocular rosacea. Ophthalmology 104:1868–1874PubMedGoogle Scholar
  6. 6.
    Baudouin C, Haouat N, Brignole F et al. (1992) Immunopathological findings in conjunctival cells using immunofluorescence staining of impression cytology specimens. Br J Ophthalmol 76:545–549Google Scholar
  7. 7.
    Belfort R Jr, Mendes NF (1979) T- and B-lymphocytes in the human conjunctiva and lacrimal gland. In: Silverstein AM, O’Connor RG (eds) Immunology and immunopathology of the eye. Masson Publishing, New York, pp 287–291Google Scholar
  8. 8.
    Bhan AK, Fujikawa LS, Foster CS (1982) T-cell subsets and Langerhans cells in normal and diseased conjunctiva. Am J Ophthalmol 94:205–212PubMedGoogle Scholar
  9. 9.
    Bialasiewicz AA, Barthelmess S, Lang GK et al. (1984) Zur Abklärung infektiöser, entzündlicher äußerer Augenerkrankungen. Klin Monatsbl Augenheilkd 185:174–176PubMedGoogle Scholar
  10. 10.
    Bienenstock J, McDermott M, Befus D, O’Neill M (1978) A common mucosal immunologic system involving the bronchus, breast and bowel. Adv Exp Med Biol 107:53–59PubMedGoogle Scholar
  11. 11.
    Brandtzaeg P (1998) Development and basic mechanisms of human gut immunity. Nutr Rev 56:S5–18Google Scholar
  12. 12.
    Brandtzaeg P, Berstad AE, Farstad IN et al. (1997) Mucosal immunity-a major adaptive defence mechanism. Behring Inst Mitt 98:1–23PubMedGoogle Scholar
  13. 13.
    Brandtzaeg P, Farstad IN (1999) The human mucosal B-cell system. In: Ogra PL, Mestecky J, Lamm ME et al. (eds) Handbook of mucosal immunology, 2nd edn. Academic Press, San DiegoGoogle Scholar
  14. 14.
    Brewitt H (1997) Das „trockene Auge“. Z Allg Med 73:729–735Google Scholar
  15. 15.
    Brewitt H (2000) Das Trockene Auge. Was war? Was ist? Was wird? Z Prakt Augenheilkd 21:52–58Google Scholar
  16. 16.
    Brewitt H, Zierhut M (2001) Physiologie des Tränenfilms. In: Brewitt H, Zierhut M (Hrsg) Trockenes Auge. Kaden, Heidelberg, S 33–41Google Scholar
  17. 17.
    Butcher EC, Picker LJ (1996) Lymphocyte homing and homeostasis. Science 272:60–66PubMedGoogle Scholar
  18. 18.
    Cohen EJ, Allansmith MR (1981) Fixation techniques for secretory component in human lacrimal gland and conjunctiva. Am J Ophthalmol 91:789–793PubMedGoogle Scholar
  19. 19.
    Collins FM (1978) Cellular antimicrobial immunity. CRC Crit Rev Microbiol 7:27–91PubMedGoogle Scholar
  20. 20.
    Cornes JS (1965) Number, size, and distribution of Peyer’s patches in the human small intestine. Part I: the development of Peyer’s Patches. Part II: The effect of age on Peyer’s Patches. Clin Exp Immunol 6:225–233Google Scholar
  21. 21.
    Cross WD, Lay LF Jr, Walt JG, Kozma CM (2002) Clinical and economic implications of topical cyclosporin A for the treatment of dry eye. Manag Care Interface 15:44–49Google Scholar
  22. 22.
    Doane MG (1985) Tear spreading, turnover and drainage. In: Holly FJ (ed), Proc 1. Int Tear Film Symposium, Lubbock, Texas, pp 652–661Google Scholar
  23. 23.
    Dua HS, Donoso LA, Laibson PR (1994) Conjunctival instillation of retinal antigens induces tolerance. Ocular Immunol Inflamm 2:29–36Google Scholar
  24. 24.
    Dua HS, Gomes JA, Jindal VK et al. (1994) Mucosa specific lymphocytes in the human conjunctiva, corneoscleral limbus and lacrimal gland. Curr Eye Res 13:87–93PubMedGoogle Scholar
  25. 25.
    Dursun D, Wang M, Monroy D et al. (2002) Experimentally induced dry eye produces ocular surface inflammation and epithelial disease. Adv Exp Med Biol 506:647–655PubMedGoogle Scholar
  26. 26.
    Franklin RM, Kenyon KR, Tomasi TB Jr (1973) Immunohistologic studies of human lacrimal gland: localization of immunoglobulins, secretory component and lactoferrin. J Immunol 110:984–992Google Scholar
  27. 27.
    Franklin RM, Remus LE (1984) Conjunctival-associated lymphoid tissue: evidence for a role in the secretory immune system. Invest Ophthalmol Vis Sci 25:181–187PubMedGoogle Scholar
  28. 28.
    Fujishima H, Saito I, Takeuchi T et al. (1997) Characterization of cytokine mRNA transcripts in conjunctival cells in patients with allergic conjunctivitis. Invest Ophthalmol Vis Sci 38:1350–1357Google Scholar
  29. 29.
    Gillette TE, Greiner JV, Allansmith MR (1981) Immunohistochemical localization of human tear lysozyme. Arch Ophthalmol 99:298–300PubMedGoogle Scholar
  30. 30.
    Haynes RJ, Tighe PJ, Dua HS (1999) Antimicrobial defensin peptides of the human ocular surface. Br J Ophthalmol 83:737–741PubMedGoogle Scholar
  31. 31.
    Hazlett LD (2002) Pathogenic mechanisms of P. aeruginosa keratitis: a review of the role of T cells, Langerhans cells, PMN, and cytokines. DNA Cell Biol 21:383–390PubMedGoogle Scholar
  32. 32.
    Hingorani M, Metz D, Lightman SL (1997) Characterisation of the normal conjunctival leukocyte population. Exp Eye Res 64:905–912PubMedGoogle Scholar
  33. 33.
    Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580PubMedGoogle Scholar
  34. 34.
    Jones DT, Monroy D, Ji Z et al. (1994) Sjogren’s syndrome: cytokine and Epstein-Barr viral gene expression within the conjunctival epithelium. Invest Ophthalmol Vis Sci 35:3493–3504PubMedGoogle Scholar
  35. 35.
    Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137–138Google Scholar
  36. 36.
    Kessing SV (1968) Mucous gland system of the conjunctiva. A quantitative normal anatomical study. Acta Ophthalmol Copenh [Suppl] 95:1–133Google Scholar
  37. 37.
    Knop E (2001) Konzept eines Augen-assoziierten lymphatischen Gewebes als funktionelle Einheit zur Immunabwehr der Augenoberfläche. Habilitationsschrift, Medizinische Hochschule HannoverGoogle Scholar
  38. 38.
    Knop E, Claus P, Knop N (2003) Eye-Associated Lymphoid Tissue (EALT): RT-PCR verifies the presence of mRNA for IgA and its transporter (secretory component) in the normal human conjunctiva. Invest Ophthalmol Vis Sci 44:S3801Google Scholar
  39. 39.
    Knop E, Knop N (1996) Flachpräparation des Konjunktivalsackes: eine Methode zur topografischen und mikroskopischen Untersuchung seiner Bestandteile. Verh Anat Ges [Anat Anz Suppl 178] 92:262Google Scholar
  40. 40.
    Knop E, Knop N (1996) MALT tissue of the conjunctiva and nasolacrimal system in the rabbit and human. Vis Res 36:60Google Scholar
  41. 41.
    Knop E, Knop N (1997) The mucosa associated lymphoid tissue of the human conjunctiva consists of three components: solitary follicles, crypt associated MALT and a lymphoid layer. Invest Ophthalmol Vis Sci 38:125Google Scholar
  42. 42.
    Knop E, Knop N (1998) Die menschliche Konjunktiva enthält mukosa-assoziiertes lymphatisches Gewebe vom organisierten und diffusen Typ. Verh Anat Ges [Anat Anz Suppl] 180:70Google Scholar
  43. 43.
    Knop E, Knop N (2000) The human lacrimal drainage system contains lymphoid tissue and is a component of the secretory immune system. Verh Anat Ges [Anat Anz Suppl 182] 95:44Google Scholar
  44. 44.
    Knop E, Knop N (2001) Lacrimal drainage associated lymphoid tissue (LDALT): a part of the human mucosal immune system. Invest Ophthalmol Vis Sci 42:566–574Google Scholar
  45. 45.
    Knop E, Knop N (2002) Human lacrimal drainage-associated lymphoid tissue (LDALT) belongs to the common mucosal immune system. Adv Exp Med Biol 506:861–866PubMedGoogle Scholar
  46. 46.
    Knop N, Knop E (1996) Mucosa-assoziiertes lymphatisches Gewebe in Konjunktiva und nasolacrimalem System des Kaninchens. Ophthalmologe 93:62Google Scholar
  47. 47.
    Knop N, Knop E (1996) The lacrimal sac in the rabbit and human is associated with MALT. Vis Res 36:195Google Scholar
  48. 48.
    Knop N, Knop E (1997) The MALT tissue of the ocular surface is continued inside the lacrimal sac in the rabbit and human. Invest Ophthalmol Vis Sci 38:126Google Scholar
  49. 49.
    Knop N, Knop E (1998) Mukosa-assoziiertes lymphatisches Gewebe im Tränensack von Mensch und Kaninchen. Verh Anat Ges [Anat Anz Suppl] 93:132Google Scholar
  50. 50.
    Knop N, Knop E (2000) Conjunctiva-associated lymphoid tissue in the human eye. Invest Ophthalmol Vis Sci 41:1270–1279PubMedGoogle Scholar
  51. 51.
    Kraehenbuhl JP, Neutra MR (1992) Molecular and cellular basis of immune protection of mucosal surfaces. Physiol Rev 72:853–879PubMedGoogle Scholar
  52. 52.
    Kunert KS, Tisdale AS, Stern ME et al. (2000) Analysis of topical cyclosporine treatment of patients with dry eye syndrome: effect on conjunctival lymphocytes. Arch Ophthalmol 118:1489–1496PubMedGoogle Scholar
  53. 53.
    MacDonald TT, Bajaj-Elliott M, Pender SL (1999) T cells orchestrate intestinal mucosal shape and integrity. Immunol Today 20:505–510CrossRefPubMedGoogle Scholar
  54. 54.
    McGhee JR, Lamm ME, Strober W (1999) Mucosal immune responses. an overview. In: Ogra PL, Mestecky J, Lamm ME et al. (eds) Handbook of mucosal immunology, 2nd edn. Academic Press, San Diego, pp 485–506Google Scholar
  55. 55.
    Mestecky J, McGhee JR, Michalek SM et al. (1978). Concept of the local and common mucosal immune response. Adv Exp Med Biol 107:185–192PubMedGoogle Scholar
  56. 56.
    Metz DP, Hingorani M, Calder VL et al. (1997) T-cell cytokines in chronic allergic eye disease. J Allergy Clin Immunol 100:817–824PubMedGoogle Scholar
  57. 57.
    Nava A, Barton K, Monroy DC, Pflugfelder SC (1997) The effects of age, gender, and fluid dynamics on the concentration of tear film epidermal growth factor. Cornea 16:430–438PubMedGoogle Scholar
  58. 58.
    Osterlind G (1944) An investigation into the presence of lymphatic tissue in the human conjunctiva, and its biological and clinical importance. Acta Ophthalmol Copenh [Suppl] 23:1–79Google Scholar
  59. 59.
    Paulsen FP, Paulsen JI, Thale AB et al. (2002) Organized mucosa-associated lymphoid tissue in human naso-lacrimal ducts. Adv Exp Med Biol 506:873–876PubMedGoogle Scholar
  60. 60.
    Paulsen FP, Paulsen JI, Thale AB, Tillmann BN (2000) Mucosa-associated lymphoid tissue in human efferent tear ducts. Virchows Arch 437:185–189PubMedGoogle Scholar
  61. 61.
    Pearlman E, Lass JH, Bardenstein DS et al. (1995) Interleukin 4 and T helper type 2 cells are required for development of experimental onchocercal keratitis (river blindness). J Exp Med 182:931–940PubMedGoogle Scholar
  62. 62.
    Perra MT, Serra A, Sirigu P, Turno F (1995) A histochemical and immunohistochemical study of certain defense mechanisms in the human lacrimal sac epithelium. Arch Histol Cytol 58:517–522Google Scholar
  63. 63.
    Pflugfelder SC, Jones D, Ji Z et al. (1999) Altered cytokine balance in the tear fluid and conjunctiva of patients with Sjogren’s syndrome keratoconjunctivitis sicca. Curr Eye Res 19:201–211PubMedGoogle Scholar
  64. 64.
    Pflugfelder SC, Solomon A, Stern ME (2000) The diagnosis and management of dry eye: a twenty-five-year review. Cornea 19:644–649PubMedGoogle Scholar
  65. 65.
    Pleyer U (2001) Immunologie des Tränenfilms. In: Brewitt H, Zierhut M (Hrsg) Trockenes Auge. Kaden Verlag, Heidelberg, S 49–56Google Scholar
  66. 66.
    Pleyer U, Baatz H (1997) Antibacterial protection of the ocular surface. Ophthalmologica 211 [Suppl 1]:2–8Google Scholar
  67. 67.
    Pleyer U, Dannowski H, Volk HD, Ritter T (2001) Corneal allograft rejection: current understanding. I. Immunobiology and basic mechanisms. Ophthalmologica 215:254–262PubMedGoogle Scholar
  68. 68.
    Ruprecht KW, Bialasiewicz AA (1987) Bakterielle Konjunktivitis. Fortschr Ophthalmol 84:55–64PubMedGoogle Scholar
  69. 69.
    Sacks EH, Jakobiec FA, Wieczorek R et al. (1989) Immunophenotypic analysis of the inflammatory infiltrate in ocular cicatricial pemphigoid. Further evidence for a T cell- mediated disease. Ophthalmology 96:236–243PubMedGoogle Scholar
  70. 70.
    Sacks EH, Wieczorek R, Jakobiec FA, Knowles DM (1986) Lymphocytic subpopulations in the normal human conjunctiva. A monoclonal antibody study. Ophthalmology 93:1276–1283PubMedGoogle Scholar
  71. 71.
    Sall K, Stevenson OD, Mundorf TK, Reis BL (2000) Two multicenter, randomized studies of the efficacy and safety of cyclosporine ophthalmic emulsion in moderate to severe dry eye disease. CsA Phase 3 Study Group. Ophthalmology 107:631–639PubMedGoogle Scholar
  72. 72.
    Sullivan DA (1999) Ocular mucosal immunity. In: Ogra PL, Mestecky J, Lamm ME et al. (eds) Handbook of mucosal immunology, 2nd edn. Academic Press, San Diego, pp 1241–1281Google Scholar
  73. 73.
    Tang Q, Chen W, Hendricks RL (1997) Proinflammatory functions of IL-2 in herpes simplex virus corneal infection. J Immunol 158:1275–1283PubMedGoogle Scholar
  74. 74.
    Thale A, Paulsen F, Kohla G et al. (2001) The efferent lacrimal ducts of the human. Morphological and biochemical studies. Ophthalmologe 98:67–73PubMedGoogle Scholar
  75. 75.
    Tiffany JM, Bron AJ (1978) Role of tears in maintaining corneal integrity. Trans Ophthalmol Soc UK 98:335–338PubMedGoogle Scholar
  76. 76.
    Virchow H (1910) Mikroskopische Anatomie der äusseren Augenhaut und des Lidapparates. In: Saemisch T (Hrsg) Graefe-Saemisch Handbuch der gesamten Augenheilkunde, Band 1, 1. Abteilung, Kapitel II, 2. Aufl. W. Engelmann, Leipzig, S 431Google Scholar
  77. 77.
    Westermann J, Engelhardt B, Hoffmann JC (2001) Migration of T cells in vivo: molecular mechanisms and clinical implications. Ann Intern Med 135:279–295PubMedGoogle Scholar
  78. 78.
    Westermann J, Pabst R (1996) How organ-specific is the migration of „naive“ and „memory“ T cells? Immunol Today 17:278–282CrossRefPubMedGoogle Scholar
  79. 79.
    Wieczorek R, Jakobiec FA, Sacks EH, Knowles DM (1988) The immunoarchitecture of the normal human lacrimal gland. Relevancy for understanding pathologic conditions. Ophthalmology 95:100–109PubMedGoogle Scholar
  80. 80.
    Wotherspoon AC, Hardman L, Isaacson PG (1994) Mucosa-associated lymphoid tissue (MALT) in the human conjunctiva. J Pathol 174:33–37PubMedGoogle Scholar
  81. 81.
    Zierhut M, Stiemer R (1997) Physiological protective mechanisms of the eye. Klin Monatsbl Augenheilkd 211:1–11Google Scholar
  82. 82.
    Zuckerman BD (1966) Conjunctival pigmentation due to cosmetics. Am J Ophthalmol 62:672–676 (abst)PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Augenklinik-Forschungslabor, Charite-Universitätsmedizin Berlin, Campus Virchow KlinikumAbteilung für Zellbiologie in der Anatomie, Medizinische Hochschule HannoverHannover
  2. 2.Abteilung für Zellbiologie in der AnatomieMedizinische Hochschule HannoverHannover
  3. 3.Augenklinik-Forschungslabor, Charite-Universitätsmedizin BerlinCampus Virchow KlinikumBerlin

Personalised recommendations