Der Ophthalmologe

, Volume 100, Issue 11, pp 917–928

Das trockene Auge als komplexe Fehlregulation der funktionellen Anatomie der Augenoberfläche

Neue Impulse zum Verständnis des trockenen Auges
Leitthema

Zusammenfassung

Hintergrund

Das trockene Auge ist eine Störung des Tränenfilms, die zu Epithelschäden und einer Veränderung der normalen Homöostase an der Augenoberfläche führt.

Methoden

Es wurde ein Review der Literatur durchgeführt, um verschiedene Konzepte zum Verständnis des trockenen Auges zu vergleichen und mit einem Fokus auf Mechanismen der integrierenden funktionellen Anatomie der Augenoberfläche.

Ergebnisse

Das Verständnis der Pathogenese des trockenen Auges hat sich entwickelt von der alleinigen Erkenntnis eines zugrunde liegenden Tränenmangels über die Betrachtung der Tränenqualität bis zum Konzept der Benetzbarkeit der Augenoberfläche. Allerdings tragen zahlreiche weitere Aspekte wie die Differenzierung des Oberflächenepithels, Innervation, Hormonstatus oder Immunprotektion zur intakten funktionellen Anatomie der Augenoberfläche bei. Es mehren sich Hinweise, dass immunologisch gesteuerte Entzündungsvorgänge einen wichtigen primären oder sekundären pathogenetischen Faktor darstellen. Dies kann vermutlich durch die Zellen des physiologischen Schleimhautimmunsystems (Augen-assoziiertes lymphatisches Gewebe, EALT) reguliert werden. Androgene sind ein wichtiger trophischer Faktor für die Integrität der Augenoberfläche, und ihr Mangel prädisponiert zur Entwicklung von Entzündungen.

Schlussfolgerung

Das trockene Auge repräsentiert eine komplexe Fehlregulation der funktionellen Anatomie der Augenoberfläche, die von verschiedenen Ursachen ausgehen kann. Eine entstehende immunregulierte Entzündung kann diese Pathomechanismen verknüpfen und im Sinne eines Circulus vitiosus negativ verstärken.

Schlüsselwörter

Trockenes Auge Pathogenese Funtionelle Anatomie Fehlregulation Immunregulierte Entzündung 

Abstract

Introduction

Dry eye disease is a disorder of the tear film that results in epithelial damage and in a disruption of the normal homeostasis at the ocular surface. It is widespread and causes symptoms ranging from discomfort to blindness.

Methods

A review of the existing literature was used to compare different past and recent concepts for the understanding of dry eye disease with a focus on aspects of the integrating functional anatomy of the ocular surface.

Results

The understanding of the pathogenesis of dry eye disease has proceeded from the mere recognition of a lack of tears to a consideration of their quality and to the concept of wetting of the ocular surface. However, several other aspects as epithelial differentiation, innervation, hormonal status or immune protection contribute to the intact functional anatomy of the ocular surface. Recently it has been recognized that immunologically regulated mechanisms of inflammation represent a primary or secondary pathogenetic factor for dry eye disease. This is conceivably regulated by the cells of the physiological mucosal immune defence system, the eye-associated lymphoid tissue (EALT). Androgens represent an important trophic factor for the ocular surface and their deficiency predisposes to inflammation.

Conclusion

Dry eye disease represents a complex dysregulation of the functional anatomy of the ocular surface that can start from different alterations (e.g. insufficient secretion, defects in wetting or innervation). Immune-based inflammation is able to interconnect and negatively reinforce these different pathomechanisms, resulting in a vicious circle.

Keywords

Dry eye disease Pathogenesis Functional Anatomy Dysregulation Immune-regulated inflammation 

Literatur

  1. 1.
    Afonso AA, Monroy D, Stern ME et al. (1999) Correlation of tear fluorescein clearance and Schirmer test scores with ocular irritation symptoms. Ophthalmology 106:803–810PubMedGoogle Scholar
  2. 2.
    Afonso AA, Sobrin L, Monroy DC et al. (1999) Tear fluid gelatinase B activity correlates with IL-1alpha concentration and fluorescein clearance in ocular rosacea. Invest Ophthalmol Vis Sci 40:2506–2512PubMedGoogle Scholar
  3. 3.
    Allansmith MR, Kajiyama G, Abelson MB, Simon MA (1976) Plasma cell content of main and accessory lacrimal glands and conjunctiva. Am J Ophthalmol 82:819–826PubMedGoogle Scholar
  4. 4.
    Argueso P, Gipson IK (2001) Epithelial mucins of the ocular surface: structure, biosynthesis and function. Exp Eye Res 73:281–289PubMedGoogle Scholar
  5. 5.
    Augustin AJ, Spitznas M, Kaviani N et al. (1995) Oxidative reactions in the tear fluid of patients suffering from dry eyes. Graefes Arch Clin Exp Ophthalmol 233:694–698PubMedGoogle Scholar
  6. 6.
    Azzarolo AM, Mazaheri AH, Mircheff AK, Warren DW (1993) Sex-dependent parameters related to electrolyte, water and glycoprotein secretion in rabbit lacrimal glands. Curr Eye Res 12:795–802PubMedGoogle Scholar
  7. 7.
    Azzarolo AM, Mircheff AK, Kaswan R et al. (1997) Androgen support of lacrimal gland function. Endocrine 6:39–45PubMedGoogle Scholar
  8. 8.
    Azzarolo AM, Wood RL, Mircheff AK et al. (1999) Androgen influence on lacrimal gland apoptosis, necrosis, and lymphocytic infiltration. Invest Ophthalmol Vis Sci 40:592–602PubMedGoogle Scholar
  9. 9.
    Barton K, Nava A, Monroy DC, Pflugfelder SC (1998) Cytokines and tear function in ocular surface disease. Adv Exp Med Biol 438:461–469PubMedGoogle Scholar
  10. 10.
    Battat L, Macri A, Dursun D, Pflugfelder SC (2001) Effects of laser in situ keratomileusis on tear production, clearance, and the ocular surface. Ophthalmology 108:1230–1235PubMedGoogle Scholar
  11. 11.
    Brandtzaeg P (1996) History of oral tolerance and mucosal immunity. Ann N.Y Acad Sci 778:1–27Google Scholar
  12. 12.
    Brewitt H (1995) Diagnostik und Therapie des „trockenen Auges“. Teil 1: Physiologie des Tränenfilms. Z Prakt Augenheilkd 16:349–354Google Scholar
  13. 13.
    Brewitt H (1995) Diagnostik und Therapie des „trockenen Auges“. Teil 2: Klassifizierung verschiedener Tränenmangelzustände. Z Prakt Augenheilkd 16:425–431Google Scholar
  14. 14.
    Brewitt H (1996) Diagnostik und Therapie des „trockenen Auges“. Teil 3: Diagnostische Methoden. Z Prakt Augenheilkd 17:33–37Google Scholar
  15. 15.
    Brewitt H (2000) Das Trockene Auge. Was war? Was ist? Was wird? Z Prakt Augenheilkd 21:52–58Google Scholar
  16. 16.
    Brewitt H, Höh H, Kaercher T, Stolze HH (1997) Das „Trockene Auge“—Diagnostik und Therapie. Empfehlungen der Arbeitsgruppe Trockenes Auge im BVA. Z Prakt Augenheilkd 18:371–379Google Scholar
  17. 17.
    Brewitt H, Zierhut M (2001) Physiologie des Tränenfilms. In: Brewitt H, Zierhut M (Hrsg) Trockenes Auge. Kaden, Heidelberg, S 33–41Google Scholar
  18. 18.
    Brignole F, Pisella PJ, Goldschild M et al. (2000). Flow cytometric analysis of inflammatory markers in conjunctival epithelial cells of patients with dry eyes. Invest Ophthalmol Vis Sci 41:1356–1363PubMedGoogle Scholar
  19. 19.
    Bron AJ (2001) Diagnosis of dry eye. Surv Ophthalmol 45 [Suppl 2]:S221–S226Google Scholar
  20. 20.
    Bron AJ, Tripathi RC, Tripathi BJ (1997) Wolff’s anatomy of the eye and orbit, 8. edn. Chapman & Hall Medical, LondonGoogle Scholar
  21. 21.
    Chodosh J, Dix RD, Howell RC et al. (1994) Staining characteristics and antiviral activity of sulforhodamine B and lissamine green B. Invest Ophthalmol Vis Sci 35:1046–1058Google Scholar
  22. 22.
    Cope C, Dilly PN, Kaura R, Tiffany JM (1986) Wettability of the corneal surface: a reappraisal. Curr Eye Res 5:777–785PubMedGoogle Scholar
  23. 23.
    Cotsarelis G, Cheng SZ, Dong G et al. (1989) Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 57:201–209PubMedGoogle Scholar
  24. 24.
    Craig JP, Blades K, Patel S (1995) Tear lipid layer structure and stability following expression of the meibomian glands. Ophthalmic Physiol Opt 15:569–574PubMedGoogle Scholar
  25. 25.
    Dilly PN (1985) Conjunctival cells, subsurface vesicles, and tear film mucus. In: Holly FJ (ed) Proc 1. Int Tear Film Symposium, Lubbock, Texas, pp 677–686Google Scholar
  26. 26.
    Dilly PN (1985) Contribution of the epithelium to the stability of the tear film. Trans Ophthalmol Soc UK 104:381–389PubMedGoogle Scholar
  27. 27.
    Doane MG (19085) Tear spreading, turnover and drainage. In: Holly FJ (ed) Proc 1. Int Tear Film Symposium, Lubbock, Texas, pp 652–661Google Scholar
  28. 28.
    Dua HS, Donoso LA, Laibson PR (1994) Conjunctival instillation of retinal antigens induces tolerance. Ocular Immunol Inflamm 2:29–36Google Scholar
  29. 29.
    Dua HS, Gomes JA, Jindal VK et al. (1994) Mucosa specific lymphocytes in the human conjunctiva, corneoscleral limbus and lacrimal gland. Curr Eye Res 13:87–93PubMedGoogle Scholar
  30. 30.
    Dursun D, Monroy D, Knighton R et al. (2000) The effects of experimental tear film removal on corneal surface regularity and barrier function. Ophthalmology 107:1754–1760PubMedGoogle Scholar
  31. 31.
    Egbert PR, Lauber S, Maurice DM (1977) A simple conjunctival biopsy. Am J Ophthalmol 84:798–801PubMedGoogle Scholar
  32. 32.
    Erb C, Horn A, Gunthner A et al. (1996) Psychosomatic aspects of patients with primary keratoconjunctivitis sicca. Klin Monatsbl Augenheilkd 208:96–99PubMedGoogle Scholar
  33. 33.
    Feenstra RP, Tseng SC (1992) What is actually stained by rose bengal? Arch Ophthalmol 110:984–993Google Scholar
  34. 34.
    Franck C, Palmvang IB, Boge IP (1993) Break-up time and lissamine green epithelial damage in „office eye syndrome“. Six-month and one-year follow-up investigations [published erratum appears in Acta Ophthalmol (Copenh) 1993 Apr; 71(2):287]. Acta Ophthalmol Copenh 71:62–64PubMedGoogle Scholar
  35. 35.
    Franklin RM, Kenyon KR, Tomasi TB Jr (1973) Immunohistologic studies of human lacrimal gland: localization of immunoglobulins, secretory component and lactoferrin. J Immunol 110:984–992Google Scholar
  36. 36.
    Gamache DA, Dimitrijevich SD, Weimer LK et al. (1997) Secretion of proinflammatory cytokines by human conjunctival epithelial cells. Ocul Immunol Inflamm 5:117–128PubMedGoogle Scholar
  37. 37.
    Garrana RM, Zieske JD, Assouline M, Gipson IK (1999) Matrix metalloproteinases in epithelia from human recurrent corneal erosion. Invest Ophthalmol Vis Sci 40:1266–1270PubMedGoogle Scholar
  38. 38.
    Gilbard JP, Farris RL (1979) Tear osmolarity and ocular surface disease in keratoconjunctivitis sicca. Arch Ophthalmol 97:1642–1646PubMedGoogle Scholar
  39. 39.
    Gillette TE, Allansmith MR, Greiner JV, Janusz M (1980) Histologic and immunohistologic comparison of main and accessory lacrimal tissue. Am J Ophthalmol 89:724–730PubMedGoogle Scholar
  40. 40.
    Götz M, Jaeger W, Kruse F (1986) Die Impressionszytologie als nichtinvasive Methode der Bindehaut-Biopsie und ihre Ergebnisse. Klin Monatsbl Augenheilkd 188:23–28PubMedGoogle Scholar
  41. 41.
    Greiner JV, Glonek T, Korb DR, Leahy CD (1996) Meibomian gland phospholipids. Curr Eye Res 15:371–375PubMedGoogle Scholar
  42. 42.
    Greiner JV, Henriques A, Weidmann T, Covington H (1969) „Second“ mucus secretory system of the human conjunctiva. Invest Ophthalmol [Suppl], SarasotaGoogle Scholar
  43. 43.
    Gupta A, Heigle T, Pflugfelder SC (1997) Nasolacrimal stimulation of aqueous tear production. Cornea 16:645–648PubMedGoogle Scholar
  44. 44.
    Haberich FJ, Lingelbach B (1982) Kritische Übersicht über unsere Kenntnisse und Vorstellung einer neuen Arbeitshypothese über die Stabilität des präkornealen Tränenfilms (PKTF). Klin Monatsbl Augenheilkd 180:115–126PubMedGoogle Scholar
  45. 45.
    Hanne W, Brewitt H (1994) Veränderungen von Sehfunktionen durch Arbeit am Datensichtgerät. Ophthalmologe 91:107–112PubMedGoogle Scholar
  46. 46.
    Haynes RJ, Tighe PJ, Scott RA, Dua HS (1999) Human conjunctiva contains high endothelial venules that express lymphocyte homing receptors. Exp Eye Res 1999;69:397–403.Google Scholar
  47. 47.
    Heimann H, Coupland SE et al. (2001) Änderungen der Mucin-, Tenascin-, Syndecan-1-Expression der Bindehaut nach Netzhautchirurgie und Applikator-Strahlentherapie. Graefes Arch Clin Exp Ophthalmol 239:488–495PubMedGoogle Scholar
  48. 48.
    Holly FJ (1973) Formation and stability of the tear film. Int Ophthalmol Clin 13:73–96PubMedGoogle Scholar
  49. 49.
    Holly FJ (1985) Tear film formation and rupture : an update. In: Holly FJ (ed) Proc 1. Int Tear Film Symposium, Lubbock, Texas, pp 634–645Google Scholar
  50. 50.
    Holly FJ, Lemp M (1971) Wettability and wetting of corneal epithelium. Exp Eye Res 11:239–250PubMedGoogle Scholar
  51. 51.
    Holly FJ, Lemp M (1977) Tear physiology and dry eyes. Surv Ophthalmol 22:69–87PubMedGoogle Scholar
  52. 52.
    Höh H, Schirra F, Kienecker C, Ruprecht KW (1995) Lidkantenparallele Falten sind ein sicheres Zeichen des Trockenen Auges. Ophthalmologe 92:802–808PubMedGoogle Scholar
  53. 53.
    Jones DT, Monroy D, Ji Z et al. (1994) Sjogren’s syndrome: cytokine and Epstein-Barr viral gene expression within the conjunctival epithelium. Invest Ophthalmol Vis Sci 35:3493–3504PubMedGoogle Scholar
  54. 54.
    Jones DT, Monroy D, Ji Z, Pflugfelder SC (1998) Alterations of ocular surface gene expression in Sjogren’s syndrome. Adv Exp Med Biol 438:533–536PubMedGoogle Scholar
  55. 55.
    Jones LT (1973) Anatomy of the tear system. Int Ophthalmol Clin 13:3–22Google Scholar
  56. 56.
    Jordan A, Baum J (1980) Basic tear flow. Does it exist? Ophthalmology 87:920–930PubMedGoogle Scholar
  57. 57.
    Kaercher T (2001) Blepharitis. In: Brewitt H, Zierhut M (Hrsg) Trockenes Auge. Kaden, Heidelberg, S 113–126Google Scholar
  58. 58.
    Kaercher T, Welt R (1998) Lipidstörungen des Tränenfilms. Z Prakt Augenheilkd 19:171–180Google Scholar
  59. 59.
    Kessing SV (1968) Mucous gland system of the conjunctiva. A quantitative normal anatomical study. Acta Ophthalmol Copenh [Suppl] 95:1–133Google Scholar
  60. 60.
    Kessler TL, Mercer HJ, Zieske JD et al. (1995) Stimulation of goblet cell mucous secretion by activation of nerves in rat conjunctiva. Curr Eye Res 14:985–992PubMedGoogle Scholar
  61. 61.
    King-Smith PE, Fink BA, Fogt N et al. (2000) The thickness of the human precorneal tear film: evidence from reflection spectra. Invest Ophthalmol Vis Sci 41:3348–3359PubMedGoogle Scholar
  62. 62.
    Kirch W, Horneber M, Tamm ER (1996) Characterization of Meibomian gland innervation in the cynomolgus monkey (Macaca fascicularis). Anat Embryol (Berl) 193:365–375Google Scholar
  63. 63.
    Knop E (2001) Impressionszytologie. In: Brewitt H, Zierhut M (Hrsg) Trockenes Auge. Kaden, Heidelberg, S 87–95Google Scholar
  64. 64.
    Knop E (2001) Konzept eines Augen-assoziierten lymphatischen Gewebes als funktionelle Einheit zur Immunabwehr der Augenoberfläche. Habilitationsschrift, Medizinische Hochschule HannoverGoogle Scholar
  65. 65.
    Knop E, Brewitt H (1992) Conjunctival cytology in asymptomatic wearers of soft contact lenses. Graefes Arch Clin Exp Ophthalmol 230:340–347PubMedGoogle Scholar
  66. 66.
    Knop E, Brewitt H (1992) Morphology of the conjunctival epithelium in spectacle and contact lens wearers—a light and electron microscopic study. Contactologia 14E:108–120Google Scholar
  67. 67.
    Knop E, Knop N (1997) The mucosa associated lymphoid tissue of the human conjunctiva consists of three components: solitary follicles, crypt associated MALT and a lymphoid layer. Invest Ophthalmol Vis Sci 38:125Google Scholar
  68. 68.
    Knop E, Knop N (1998) Die menschliche Konjunktiva enthält mukosa-assoziiertes lymphatisches Gewebe vom organisierten und diffusen Typ. Verh Anat Ges [Anat Anz Suppl] 180:70Google Scholar
  69. 69.
    Knop E, Knop N (1998) Fine structure of high endothelial venules in the human conjunctiva. Ophthalmic Res 30:169Google Scholar
  70. 70.
    Knop E, Knop N (1998) High endothelial venules are a normal component of lymphoid tissue in the human conjunctiva and lacrimal sac. Invest Ophthalmol Vis Sci 39:548Google Scholar
  71. 71.
    Knop E, Knop N (1999) Conjunctiva-associated lymphoid tissue (CALT) in the human eye—components and topographical distribution. Ophthalmic Res 31:156Google Scholar
  72. 72.
    Knop E, Knop N (2001) Lacrimal drainage associated lymphoid tissue (LDALT): a part of the human mucosal immune system. Invest Ophthalmol Vis Sci 42:566–574Google Scholar
  73. 73.
    Knop E, Knop N (2002) A functional unit for ocular surface immune defense formed by the lacrimal gland, conjunctiva and lacrimal drainage system. Adv Exp Med Biol 506:835–844PubMedGoogle Scholar
  74. 74.
    Knop E, Knop N (2002) Human lacrimal drainage-associated lymphoid tissue (LDALT) belongs to the common mucosal immune system. Adv Exp Med Biol 506:861–866PubMedGoogle Scholar
  75. 75.
    Knop N, Knop E (1996) Mucosa-assoziiertes lymphatisches Gewebe in Konjunktiva und nasolacrimalem System des Kaninchens. Ophthalmologe 93:62Google Scholar
  76. 76.
    Knop N, Knop E (1996) The lacrimal sac in the rabbit and human is associated with MALT. Vis Res 36:195Google Scholar
  77. 77.
    Knop N, Knop E (1998) Mukosa-assoziiertes lymphatisches Gewebe im Tränensack von Mensch und Kaninchen. Verh Anat Ges [Anat Anz Suppl] 93:132Google Scholar
  78. 78.
    Knop N, Knop E (2000) Conjunctiva-associated lymphoid tissue in the human eye. Invest Ophthalmol Vis Sci 41:1270–1279PubMedGoogle Scholar
  79. 79.
    Knorr M, Denk PO (2001) Biochemie des Tränenfilms. In: Brewitt H, Zierhut M (Hrsg) Trockenes Auge. Kaden, Heidelberg, S 43–48Google Scholar
  80. 80.
    Kraehenbuhl JP, Neutra MR (1992) Molecular and cellular basis of immune protection of mucosal surfaces. Physiol Rev 72:853–879PubMedGoogle Scholar
  81. 81.
    Krenzer KL, Dana MR, Ullman MD et al. (2000) Effect of androgen deficiency on the human meibomian gland and ocular surface. J Clin Endocrinol Metab 85:4874–4882PubMedGoogle Scholar
  82. 82.
    Krenzer KL, Freddo TF (1997) Cytokeratin expression in normal human bulbar conjunctiva obtained by impression cytology. Invest Ophthalmol Vis Sci 38:142–152PubMedGoogle Scholar
  83. 83.
    Kruse FE (1994) Stem cells and corneal epithelial regeneration. Eye 8:170–183PubMedGoogle Scholar
  84. 84.
    Kunert KS, Tisdale AS, Gipson IK (2002) Goblet cell numbers and epithelial proliferation in the conjunctiva of patients with dry eye syndrome treated with cyclosporine. Arch Ophthalmol 120:330–337PubMedGoogle Scholar
  85. 85.
    Kunert KS, Tisdale AS, Stern ME et al. (2000) Analysis of topical cyclosporine treatment of patients with dry eye syndrome: effect on conjunctival lymphocytes. Arch Ophthalmol 118:1489–1496PubMedGoogle Scholar
  86. 86.
    Lemp M, Holly FJ, Shuzo I, Dohlman C (1970) The precorneal tear film. 1. Factors in spreading and maintaining a continuous tear film over the corneal surface. Arch Ophthalmol 83:89–94PubMedGoogle Scholar
  87. 87.
    Lemp MA (1973) Breakup of the tear film. Int Ophthalmol Clin 13:97–102PubMedGoogle Scholar
  88. 88.
    Lemp MA (1973) Pathophysiology and diagnosis of tear film abnormalities. Surfacing abnormalities. Int Ophthalmol Clin 13:191–197PubMedGoogle Scholar
  89. 89.
    Lemp MA (1995) Report of the National Eye Institute/Industry workshop on Clinical Trials in Dry Eyes. CLAO J 21:221–232PubMedGoogle Scholar
  90. 90.
    Lemp MA, Dohlman CH, Kuwabara T et al. (1971) Dry eye secondary to mucus deficiency. Trans Am Acad Ophthalmol Otolaryngol 75:1223–1227PubMedGoogle Scholar
  91. 91.
    Li DQ, Lokeshwar BL, Solomon A et al. (2001) Regulation of MMP-9 production by human corneal epithelial cells. Exp Eye Res 73:449–459PubMedGoogle Scholar
  92. 92.
    Li Q, Weng J, Mohan RR et al. (1996) Hepatocyte growth factor and hepatocyte growth factor receptor in the lacrimal gland, tears, and cornea. Invest Ophthalmol Vis Sci 37:727–739PubMedGoogle Scholar
  93. 93.
    MacDonald TT, Bajaj-Elliott M, Pender SL (1999) T cells orchestrate intestinal mucosal shape and integrity. Immunol Today 20:505–510CrossRefPubMedGoogle Scholar
  94. 94.
    Macri A, Rolando M, Pflugfelder S (2000) A standardized visual scale for evaluation of tear fluorescein clearance. Ophthalmology 107:1338–1343Google Scholar
  95. 95.
    Maitchouk DY, Beuerman RW, Ohta T et al. (2000) Tear production after unilateral removal of the main lacrimal gland in squirrel monkeys. Arch Ophthalmol 118:246–252PubMedGoogle Scholar
  96. 96.
    Marquardt R, Stodtmeister R, Christ T (1985) Modification of the tear film break-up time test for increased reliability. In: Holly FJ (ed) Proc 1. Int Tear Film SymposiumGoogle Scholar
  97. 97.
    McCulley JP, Shine W (1997) A compositional based model for the tear film lipid layer. Trans Am Ophthalmol Soc 95:79–88PubMedGoogle Scholar
  98. 98.
    McCulley JP, Shine WE (2001) The lipid layer: the outer surface of the ocular surface tear film. Biosci Rep 21:407–418PubMedGoogle Scholar
  99. 99.
    Meller D, Li DQ, Tseng SC (2000) Regulation of collagenase, stromelysin, and gelatinase B in human conjunctival and conjunctivochalasis fibroblasts by interleukin-1beta and tumor necrosis factor-alpha. Invest Ophthalmol Vis Sci 41:2922–2929PubMedGoogle Scholar
  100. 100.
    Meller D, Tseng SC (1999) Conjunctival epithelial cell differentiation on amniotic membrane. Invest Ophthalmol Vis Sci 40:878–886PubMedGoogle Scholar
  101. 101.
    Mengher LS, Pandher KS, Bron AJ (1986) Non-invasive tear film break-up time: sensitivity and specificity. Acta Ophthalmol Copenh 64:441–444PubMedGoogle Scholar
  102. 102.
    Mishima S, Maurice D (1961) The oily layer of the tear film and evaporation from the corneal surface. Exp Eye Res 1:39–45PubMedGoogle Scholar
  103. 103.
    Moore CP, McHugh JB, Thorne JG, Phillips TE (2001) Effect of cyclosporine on conjunctival mucin in a canine keratoconjunctivitis sicca model. Invest Ophthalmol Vis Sci 42:653–659PubMedGoogle Scholar
  104. 104.
    Moore J, Tiffany JM (1979) The human ocular mucus. Origins and preliminary characterisation. Exp Eye Res 29:291PubMedGoogle Scholar
  105. 105.
    Nelson JD, Helms H, Fiscella R et al. (2000) A new look at dry eye disease and its treatment. Adv Ther 17:84–93PubMedGoogle Scholar
  106. 106.
    Nepp J, Wedrich A, Akramian J et al. (1998) Dry eye treatment with acupuncture. A prospective, randomized, double-masked study. Adv Exp Med Biol 438:1011–1016PubMedGoogle Scholar
  107. 107.
    Nguyen DH, Beuerman RW, Meneray MA, Maitchouk D (1998) Sensory denervation leads to deregulated protein synthesis in the lacrimal gland. Adv Exp Med Biol ;438:55–62Google Scholar
  108. 108.
    Nichols BA, Chiappino ML, Dawson CR (1985) Demonstration of the mucous layer of the tear film by electron microscopy. Invest Ophthalmol Vis Sci 26:464–473PubMedGoogle Scholar
  109. 109.
    Norn M (1985) Tear film break-up time. A review. In: Holly FJ (ed) Proc 1. Int Tear Film Symposium, Lubbock, Texas, pp 52–63Google Scholar
  110. 110.
    Norn MS (1991) Diagnostische Methoden. In: Lemp M, Marquardt R (Hrsg) Das trockene Auge in Klinik und Praxis. Springer, Berlin Heidelberg New York Tokyo, S 133–183Google Scholar
  111. 111.
    Ohashi Y, Motokura M, Kinoshita Y et al. (1989) Presence of epidermal growth factor in human tears. Invest Ophthalmol Vis Sci 30:1879–1882PubMedGoogle Scholar
  112. 112.
    Paulsen F, Thale A, Schaudig U (2002) Ableitende Tränenwege und Trockenes Auge. Ophthalmologe 99:566–574Google Scholar
  113. 113.
    Paulsen FP, Paulsen JI, Thale AB et al. (2002) Organized mucosa-associated lymphoid tissue in human naso-lacrimal ducts. Adv Exp Med Biol 506:873–876PubMedGoogle Scholar
  114. 114.
    Paulsen FP, Paulsen JI, Thale AB, Tillmann BN (2000) Mucosa-associated lymphoid tissue in human efferent tear ducts. Virchows Arch 437:185–189PubMedGoogle Scholar
  115. 115.
    Pellegrini G, Golisano O, Paterna P et al. (1999) Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. J Cell Biol 145:769–782PubMedGoogle Scholar
  116. 116.
    Pflugfelder SC (1998) Tear fluid influence on the ocular surface. Adv Exp Med Biol 438:611–617PubMedGoogle Scholar
  117. 117.
    Pflugfelder SC, Huang AJ, Feuer W et al. (1990) Conjunctival cytologic features of primary Sjogren’s syndrome. Ophthalmology 97:985–991PubMedGoogle Scholar
  118. 118.
    Pflugfelder SC, Jones D, Ji Z et al. (1999) Altered cytokine balance in the tear fluid and conjunctiva of patients with Sjogren’s syndrome keratoconjunctivitis sicca. Curr Eye Res 19:201–211PubMedGoogle Scholar
  119. 119.
    Pflugfelder SC, Solomon A, Stern ME (2000) The diagnosis and management of dry eye: a twenty-five-year review. Cornea 19:644–649PubMedGoogle Scholar
  120. 120.
    Pflugfelder SC, Tseng SC, Yoshino K et al. (1997) Correlation of goblet cell density and mucosal epithelial membrane mucin expression with rose bengal staining in patients with ocular irritation. Ophthalmology 104:223–235Google Scholar
  121. 121.
    Pleyer U (2001) Immunologie des Tränenfilms. In: Brewitt H, Zierhut M (Hrsg) Trockenes Auge. Kaden, Heidelberg, S 49–56Google Scholar
  122. 122.
    Pleyer U, Ritter T, Volk HD (2000) Immune tolerance and gene therapy in transplantation. Immunol Today 21:12–14PubMedGoogle Scholar
  123. 123.
    Prabhasawat P, Tseng SC (1998) Frequent association of delayed tear clearance in ocular irritation. Br J Ophthalmol 82:666–675PubMedGoogle Scholar
  124. 124.
    Prydal JI, Artal P, Woon H, Campbell FW (1992) Study of human precorneal tear film thickness and structure using laser interferometry. Invest Ophthalmol Vis Sci 33:2006–2011PubMedGoogle Scholar
  125. 125.
    Rocha EM, Wickham LA, da Silveira LA et al. (2000) Identification of androgen receptor protein and 5alpha-reductase mRNA in human ocular tissues. Br J Ophthalmol 84:76–84PubMedGoogle Scholar
  126. 126.
    Rohen J (1986) Zur funktionellen Morphologie der Conjunctiva. Fortschr Ophthalmol 83:13–24PubMedGoogle Scholar
  127. 127.
    Rolando M, Baldi F, Calabria G (1985) Tear mucus ferning test in keratoconjunctivitis sicca. In: Holly FJ (ed) Proc 1. Int Tear Film Symposium, Lubbock, Texas, pp 203–209Google Scholar
  128. 128.
    Rolando M, Zierhut M (2001) The ocular surface and tear film and their dysfunction in dry eye disease. Surv Ophthalmol 45 [Suppl 2]:S203–S210Google Scholar
  129. 129.
    Ruprecht KW, Schirra F (2001) Epidemiologie des Trockenen Auges. In: Brewitt H, Zierhut M (Hrsg) Trockenes Auge. Kaden, Heidelberg, S 57–60Google Scholar
  130. 130.
    Ruskell GL (1975) Nerve terminals and epithelial cell variety in the human lacrimal gland. Cell Tissue Res 158:121–136PubMedGoogle Scholar
  131. 131.
    Ruskell GL (1985) Innervation of the conjunctiva. Trans Ophthalmol Soc UK 104:390–395PubMedGoogle Scholar
  132. 132.
    Sack RA, Nunes I, Beaton A, Morris C (2001) Host-defense mechanism of the ocular surfaces. Biosci Rep 21:463–480PubMedGoogle Scholar
  133. 133.
    Salvatore MF, Pedroza L, Beuerman RW (1999) Denervation of rabbit lacrimal gland increases levels of transferrin and unidentified tear proteins of 44 and 36 kDa. Curr Eye Res 18:455–466PubMedGoogle Scholar
  134. 134.
    Schaumberg DA, Buring JE, Sullivan DA, Dana MR (2001) Hormone replacement therapy and dry eye syndrome. JAMA 286:2114–2119PubMedGoogle Scholar
  135. 135.
    Schirra F, Hoh H, Kienecker C, Ruprecht KW (1998) Using LIPCOF (lid-parallel conjunctival fold) for assessing the degree of dry eye, it is essential to observe the exact position of that specific fold. Adv Exp Med Biol 438:853–858PubMedGoogle Scholar
  136. 136.
    Seifert P, Spitznas M (1994) Demonstration of nerve fibers in human accessory lacrimal glands. Graefes Arch Clin Exp Ophthalmol 232:107–114PubMedGoogle Scholar
  137. 137.
    Seifert P, Spitznas M, Koch F, Cusumano A (1994) Light and electron microscopic morphology of accessory lacrimal glands. Adv Exp Med Biol 350:19–23PubMedGoogle Scholar
  138. 138.
    Smith VA, Rishmawi H, Hussein H, Easty DL (2001) Tear film MMP accumulation and corneal disease. Br J Ophthalmol 85:147–153PubMedGoogle Scholar
  139. 139.
    Stern ME, Beuerman RW, Fox RI et al. (1998) A unified theory of the role of the ocular surface in dry eye. Adv Exp Med Biol 438:643–651PubMedGoogle Scholar
  140. 140.
    Stern ME, Beuerman RW, Fox RI et al. (1998) The pathology of dry eye: the interaction between the ocular surface and lacrimal glands. Cornea 17:584–589PubMedGoogle Scholar
  141. 141.
    Stolze HH (2001) Diagnostik des Trockenen Auges in der Praxis. In: Brewitt H, Zierhut M (Hrsg) Trockenes Auge. Kaden, Heidelberg, S 63–79Google Scholar
  142. 142.
    Streilein JW (1995) Immunological non-responsiveness and acquisition of tolerance in relation to immune privilege in the eye. Eye 9:236–240PubMedGoogle Scholar
  143. 143.
    Sullivan BD, Evans JE, Krenzer KL et al. (2000) Impact of antiandrogen treatment on the fatty acid profile of neutral lipids in human meibomian gland secretions. J Clin Endocrinol Metab 85:4866–4873PubMedGoogle Scholar
  144. 144.
    Sullivan DA, Edwards JA (1997) Androgen stimulation of lacrimal gland function in mouse models of Sjogren’s syndrome. J Steroid Biochem Mol Biol 60:237–245PubMedGoogle Scholar
  145. 145.
    Sullivan DA, Krenzer KL, Sullivan BD et al. (1990) Does androgen insufficiency cause lacrimal gland inflammation and aqueous tear deficiency? Invest Ophthalmol Vis Sci 40:1261–1265Google Scholar
  146. 146.
    Sullivan DA, Sullivan BD, Evans JE et al. (2002) Androgen deficiency, Meibomian gland dysfunction, and evaporative dry eye. Ann N.Y Acad Sci 966:211–222Google Scholar
  147. 147.
    Sullivan DA, Sullivan BD, Ullman MD et al. (2000) Androgen influence on the meibomian gland. Invest Ophthalmol Vis Sci 41:3732–3742PubMedGoogle Scholar
  148. 148.
    Torens S, Berger E, Stave J, Guthoff R (2000) Imaging of the microarchitecture and dynamics of the break-up phenomena of the preocular tear film with the aid of laser scanning microscopy. Ophthalmologe 97:635–639PubMedGoogle Scholar
  149. 149.
    Tseng SC (1985) Modulation of conjunctival goblet cell differentiation by vitamin A: a possible mechanism for mucin deficiency. In: Holly FJ (ed) Proc 1. Int Tear Film Symposium, Lubbock, Texas, pp 877–885Google Scholar
  150. 150.
    Tseng SC, Hirst L, Maumenee A et al. (1984) Possible mechanisms for the loss of goblet cells in mucin- deficient disorders. Ophthalmology 91:545–552PubMedGoogle Scholar
  151. 151.
    Tseng SC, Hirst LW, Farazdaghi M, Green WR (1984) Goblet cell density and vascularization during conjunctival transdifferentiation. Invest Ophthalmol Vis Sci 25:1168–1176PubMedGoogle Scholar
  152. 152.
    Turner K, Pflugfelder SC, Ji Z et al. (2000) Interleukin-6 levels in the conjunctival epithelium of patients with dry eye disease treated with cyclosporine ophthalmic emulsion. Cornea 19:492–496PubMedGoogle Scholar
  153. 153.
    Warren DW, Azzarolo AM, Huang ZM et al. (1998) Androgen support of lacrimal gland function in the female rabbit. Adv Exp Med Biol 438:89–93PubMedGoogle Scholar
  154. 154.
    Wei ZG, Cotsarelis G, Sun TT, Lavker RM (1995) Label-retaining cells are preferentially located in fornical epithelium: implications on conjunctival epithelial homeostasis. Invest Ophthalmol Vis Sci 36:236–246PubMedGoogle Scholar
  155. 155.
    Wei ZG, Wu RL, Lavker RM, Sun TT (1993) In vitro growth and differentiation of rabbit bulbar, fornix, and palpebral conjunctival epithelia. Implications on conjunctival epithelial transdifferentiation and stem cells. Invest Ophthalmol Vis Sci 34:1814–1828PubMedGoogle Scholar
  156. 156.
    Wickham LA, Gao J, Toda I et al. (2000) Identification of androgen, estrogen and progesterone receptor mRNAs in the eye. Acta Ophthalmol Scand 78:146–153PubMedGoogle Scholar
  157. 157.
    Wolff E (1954) Anatomie of eye and orbit. Blakiston Co., New York, pp 231ffGoogle Scholar
  158. 158.
    Worda C, Nepp J, Huber JC, Sator MO (2001) Treatment of keratoconjunctivitis sicca with topical androgen. Maturitas 37:209–212PubMedGoogle Scholar
  159. 159.
    Xu KP, Tsubota K (1995) Correlation of tear clearance rate and fluorophotometric assessment of tear turnover. Br J Ophthalmol 79:1042–1049PubMedGoogle Scholar
  160. 160.
    Yokoi N, Bron AJ, Tiffany JM, Kinoshita S (2000) Reflective meniscometry: a new field of dry eye assessment. Cornea 19:S37–S43PubMedGoogle Scholar
  161. 161.
    Zierhut M, Dana MR, Stern ME, Sullivan DA (2002) Immunology of the lacrimal gland and ocular tear film. Trends Immunol 23:333–335PubMedGoogle Scholar
  162. 162.
    Zierhut M, Elson CO, Forrester JV et al. (1998) Mucosal immunology and the eye. Immunol Today 19:148–150PubMedGoogle Scholar
  163. 163.
    Zierhut M, Stiemer R (1997) Physiologische Schutzmechanismen des Auges. Klin Monatsbl Augenheilkd 211:1–11Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Abteilung für Zellbiologie in der AnatomieMedizinische Hochschule Hannover
  2. 2.Klinik für AugenheilkundeMedizinische Hochschule HannoverHannover
  3. 3.Augenklinik-Forschungslabor, Charite-Universitätsmedizin BerlinCampus Virchow KlinikumBerlin

Personalised recommendations