Comparison between Zumsteg classification and Briganti nomogram for the risk of lymph-node invasion before radical prostatectomy

  • Nicolas BrangerEmail author
  • Géraldine Pignot
  • François Lannes
  • Yoann Koskas
  • Harry Toledano
  • Jeanne Thomassin-Piana
  • Sophie Giusiano
  • Marine Alessandrini
  • Dominique Rossi
  • Jochen Walz
  • Cyrille Bastide
Original Article



To evaluate the performance of the Zumsteg classification to estimate the risk of lymph-node invasion (LNI) compared with the Briganti nomogram (BN) in prostatectomy patients with intermediate-risk prostate cancer (IRPC).


We included consecutive patients who had extended pelvic lymph-node dissection associated with radical prostatectomy for IRPC. To be classified favorable intermediate risk (FIR), patients could only have one intermediate-risk factor, fewer than 50% positive biopsies and no primary Gleason score of 4.


On the 387 patients included, 149 (38.5%) and 238 (54.3%) were classified FIR and unfavorable intermediate risk (UIR), respectively, and 212 (54.8%) had a BN inferior to 5%. Thirty-eight patients (9.8%) had LNI: 6 FIR patients (4.0%) versus 32 UIR patients (13.4%) and 14 patients (6.6%) with a BN inferior to 5% versus 24 patients (13.7%) with a BN superior to 5%. Eight patients with a BN inferior to 5%, but classified UIR, had LNI. Sensitivity to detect LNI was higher with the Zumsteg classification than with the BN: 84.2% (CI 95% [68–93]) versus 63.2% (CI 95% [46–78]). Both screening tests were concordant to predict LNI (kappa coefficient of 0.076, p < 0.05 for Zumsteg and Briganti)


Zumsteg classification appeared to be more sensitive and as effective (despite the impossibility to make decision curve analysis) than the BN to estimate the risk of LNI. Regarding the modest number of pN+ patients, further studies are needed to see the interest of proposing ePLND for UIR patients only.


Prostate cancer Intermediate risk Briganti nomogram Lymph-node invasion Zumsteg classification Radical prostatectomy 


Authors' contribution

NB: protocol/project development, data collection or management, data analysis, and manuscript writing/editing; JW: protocol/project development and manuscript writing/editing; FL: data collection or management; YK: data collection or management; HT: protocol/project development; JTP: data collection or management; SG: data collection or management; MA: data analysis; DR: protocol/project development; GP: protocol/project development and manuscript writing/editing; CB: protocol/project development and manuscript writing/editing.

Supplementary material

345_2019_2965_MOESM1_ESM.docx (28 kb)
Supplementary material 1 (DOCX 27 kb)
345_2019_2965_MOESM2_ESM.docx (28 kb)
Supplementary material 2 (DOCX 28 kb)
345_2019_2965_MOESM3_ESM.docx (20 kb)
Supplementary material 3 (DOCX 20 kb)


  1. 1.
    Mottet N, Bellmunt J, Bolla M et al (2019) EAU guidelines: EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer. Eur Assoc Urol 2017:146Google Scholar
  2. 2.
    Briganti A, Blute ML, Eastham JH et al (2009) Pelvic lymph node dissection in prostate cancer. Eur Urol 55:1251–1265. CrossRefPubMedGoogle Scholar
  3. 3.
    Ploussard G, Briganti A, de la Taille A et al (2014) Pelvic lymph node dissection during robot-assisted radical prostatectomy: efficacy, limitations, and complications—a systematic review of the literature. Eur Urol 65:7–16. CrossRefPubMedGoogle Scholar
  4. 4.
    Abdollah F, Gandaglia G, Suardi N et al (2015) More extensive pelvic lymph node dissection improves survival in patients with node-positive prostate cancer. Eur Urol 67:212–219. CrossRefPubMedGoogle Scholar
  5. 5.
    Yuh BE, Ruel NH, Mejia R et al (2012) Robotic extended pelvic lymphadenectomy for intermediate- and high-risk prostate cancer. Eur Urol 61:1004–1010. CrossRefPubMedGoogle Scholar
  6. 6.
    Briganti A, Abdollah F, Nini A et al (2012) Performance characteristics of computed tomography in detecting lymph node metastases in contemporary patients with prostate cancer treated with extended pelvic lymph node dissection. Eur Urol 61:1132–1138. CrossRefPubMedGoogle Scholar
  7. 7.
    Eifler JB, Feng Z, Lin BM et al (2013) An updated prostate cancer staging nomogram (Partin tables) based on cases from 2006 to 2011. BJU Int 111:22–29. CrossRefPubMedGoogle Scholar
  8. 8.
    Cagiannos I, Karakiewicz P, Eastham JA et al (2003) A preoperative nomogram identifying decreased risk of positive pelvic lymph nodes in patients with prostate cancer. J Urol 170:1798–1803. CrossRefPubMedGoogle Scholar
  9. 9.
    Godoy G, Chong KT, Cronin A et al (2011) Extent of pelvic lymph node dissection and the impact of standard template dissection on nomogram prediction of lymph node involvement. Eur Urol 60:195–201. CrossRefPubMedGoogle Scholar
  10. 10.
    Briganti A, Chun FK-H, Salonia A et al (2006) Validation of a nomogram predicting the probability of lymph node invasion among patients undergoing radical prostatectomy and an extended pelvic lymphadenectomy. Eur Urol 49:1019–1027. CrossRefPubMedGoogle Scholar
  11. 11.
    Abdollah F, Cozzarini C, Sun M et al (2013) Assessing the most accurate formula to predict the risk of lymph node metastases from prostate cancer in contemporary patients treated with radical prostatectomy and extended pelvic lymph node dissection. Radiother Oncol 109:211–216. CrossRefPubMedGoogle Scholar
  12. 12.
    Briganti A, Larcher A, Abdollah F et al (2012) Updated nomogram predicting lymph node invasion in patients with prostate cancer undergoing extended pelvic lymph node dissection: the essential importance of percentage of positive cores. Eur Urol 61:480–487. CrossRefPubMedGoogle Scholar
  13. 13.
    Dell’Oglio P, Abdollah F, Suardi N et al (2014) External validation of the european association of urology recommendations for pelvic lymph node dissection in patients treated with robot-assisted radical prostatectomy. J Endourol 28:416–423. CrossRefPubMedGoogle Scholar
  14. 14.
    Hueting TA, Cornel EB, Somford DM et al (2018) External validation of models predicting the probability of lymph node involvement in prostate cancer patients. Eur Urol Oncol 1:411–417. CrossRefPubMedGoogle Scholar
  15. 15.
    Touijer KA, Ahallal Y, Guillonneau BD (2013) Indications for and anatomical extent of pelvic lymph node dissection for prostate cancer: practice patterns of uro-oncologists in North America. Urol Oncol Semin Orig Investig 31:1517–1521. CrossRefGoogle Scholar
  16. 16.
    Bandini M, Fossati N, Briganti A (2019) Nomograms in urologic oncology, advantages and disadvantages. Curr Opin Urol 29:42–51. CrossRefPubMedGoogle Scholar
  17. 17.
    Zumsteg ZS, Spratt DE, Pei I et al (2013) A new risk classification system for therapeutic decision making with intermediate-risk prostate cancer patients undergoing dose-escalated external-beam radiation therapy. Eur Urol 64:895–902. CrossRefPubMedGoogle Scholar
  18. 18.
    Jung J-W, Lee JK, Hong SK et al (2015) Stratification of patients with intermediate-risk prostate cancer. BJU Int 115:907–912. CrossRefPubMedGoogle Scholar
  19. 19.
    Keane FK, Chen M-H, Zhang D et al (2014) The likelihood of death from prostate cancer in men with favorable or unfavorable intermediate-risk disease: pC death in intermediate-risk disease. Cancer 120:1787–1793. CrossRefPubMedGoogle Scholar
  20. 20.
    Schmid HP, McNeal JE (1992) An abbreviated standard procedure for accurate tumor volume estimation in prostate cancer. Am J Surg Pathol 16:184–191CrossRefGoogle Scholar
  21. 21.
    Ploussard G, Staerman F, Pierrevelcin J et al (2013) Predictive factors of oncologic outcomes in patients who do not achieve undetectable prostate specific antigen after radical prostatectomy. J Urol 190:1750–1756. CrossRefPubMedGoogle Scholar
  22. 22.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159. CrossRefGoogle Scholar
  23. 23.
    Cooperberg MR, Broering JM, Kantoff PW, Carroll PR (2007) Contemporary trends in low risk prostate cancer: risk assessment and treatment. J Urol 178:S14–S19. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Joniau S, Briganti A, Gontero P et al (2015) Stratification of high-risk prostate cancer into prognostic categories: a european multi-institutional study. Eur Urol 67:157–164. CrossRefPubMedGoogle Scholar
  25. 25.
    Taira AV, Merrick GS, Galbreath RW et al (2010) Relationship between prostate cancer mortality and number of unfavourable risk factors in men treated with definitive brachytherapy: relationship between prostate cancer mortality and risk factors. BJU Int 106:809–814. CrossRefPubMedGoogle Scholar
  26. 26.
    Nguyen PL, Chen M-H, Catalona WJ et al (2009) Predicting prostate cancer mortality among men with intermediate to high-risk disease and multiple unfavorable risk factors. Int J Radiat Oncol 73:659–664. CrossRefGoogle Scholar
  27. 27.
    Beauval JB, Ploussard G, Cabarrou B et al (2016) Improved decision making in intermediate-risk prostate cancer: a multicenter study on pathologic and oncologic outcomes after radical prostatectomy. World J Urol. CrossRefPubMedGoogle Scholar
  28. 28.
    Pierorazio PM, Walsh PC, Partin AW, Epstein JI (2013) Prognostic Gleason grade grouping: data based on the modified Gleason scoring system: prognostic Gleason grade grouping. BJU Int 111:753–760. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Epstein JI, Zelefsky MJ, Sjoberg DD et al (2016) A contemporary prostate cancer grading system: a validated alternative to the Gleason score. Eur Urol 69:428–435. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    D’Amico AV, Whittington R, Malkowicz SB et al (2000) clinical utility of the percentage of positive prostate biopsies in defining biochemical outcome after radical prostatectomy for patients with clinically localized prostate cancer. J Clin Oncol 18:1164–1172. CrossRefPubMedGoogle Scholar
  31. 31.
    Briganti A, Capitanio U, Abdollah F et al (2012) Assessing the risk of lymph node invasion in patients with intermediate risk prostate cancer treated with extended pelvic lymph node dissection. A novel prediction tool. Prostate 72:499–506. CrossRefPubMedGoogle Scholar
  32. 32.
    Abdollah F, Suardi N, Gallina A et al (2013) Extended pelvic lymph node dissection in prostate cancer: a 20-year audit in a single center. Ann Oncol 24:1459–1466. CrossRefPubMedGoogle Scholar
  33. 33.
    Ledezma RA, Negron E, Razmaria AA et al (2015) Robotic-assisted pelvic lymph node dissection for prostate cancer: frequency of nodal metastases and oncological outcomes. World J Urol 33:1689–1694. CrossRefPubMedGoogle Scholar
  34. 34.
    Evangelista L, Briganti A, Fanti S et al (2016) New clinical indications for 18F/11C-choline, new tracers for positron emission tomography and a promising hybrid device for prostate cancer staging: a systematic review of the literature. Eur Urol 70:161–175. CrossRefPubMedGoogle Scholar
  35. 35.
    Branger N, Maubon T, Traumann M et al (2017) Is negative multiparametric magnetic resonance imaging really able to exclude significant prostate cancer? The real-life experience. BJU Int 119:449–455. CrossRefPubMedGoogle Scholar
  36. 36.
    Gandaglia G, Ploussard G, Valerio M et al (2019) A novel nomogram to identify candidates for extended pelvic lymph node dissection among patients with clinically localized prostate cancer diagnosed with magnetic resonance imaging-targeted and systematic biopsies. Eur Urol 75:506–514. CrossRefPubMedGoogle Scholar
  37. 37.
    Bandini M, Marchioni M, Pompe RS et al (2018) First North American validation and head-to-head comparison of four preoperative nomograms for prediction of lymph node invasion before radical prostatectomy. BJU Int 121:592–599. CrossRefPubMedGoogle Scholar
  38. 38.
    Gandaglia G, Fossati N, Zaffuto E et al (2017) Development and internal validation of a novel model to identify the candidates for extended pelvic lymph node dissection in prostate cancer. Eur Urol 72:632–640. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Nicolas Branger
    • 1
    • 2
    Email author
  • Géraldine Pignot
    • 2
  • François Lannes
    • 1
  • Yoann Koskas
    • 1
    • 2
  • Harry Toledano
    • 1
  • Jeanne Thomassin-Piana
    • 3
  • Sophie Giusiano
    • 4
  • Marine Alessandrini
    • 5
  • Dominique Rossi
    • 1
  • Jochen Walz
    • 1
  • Cyrille Bastide
    • 1
  1. 1.Urology DepartmentHôpital NordMarseilleFrance
  2. 2.Urology DepartmentInstitut Paoli CalmettesMarseilleFrance
  3. 3.Pathology DepartmentInstitut Paoli CalmettesMarseilleFrance
  4. 4.Pathology DepartmentHôpital NordMarseilleFrance
  5. 5.EA 3279-Public Health, Chronic Diseases and Quality of Life, Research UnitAix-Marseille UniversityMarseilleFrance

Personalised recommendations