Advertisement

World Journal of Urology

, Volume 37, Issue 1, pp 133–142 | Cite as

Pressure matters 2: intrarenal pressure ranges during upper-tract endourological procedures

  • Theodoros TokasEmail author
  • Andreas Skolarikos
  • Thomas R. W. Herrmann
  • Udo Nagele
  • Training and Research in Urological Surgery and Technology (T.R.U.S.T.)-Group
Invited Review

Abstract

Purpose

To perform a review on the latest evidence related to intrarenal pressures (IRPs) generated during upper-tract endourology, and present different tools to maintain decreased values, to decrease complication rates.

Methods

A literature search was performed using PubMed, restricted to original English-written articles, including animal, artificial model and human studies. Different keywords were: percutaneous nephrolithotomy, PCNL, ureteroscopy, URS, RIRS, irrigation flow, irrigation pressure, intrarenal pressure, intrapelvic pressure and renal-pelvic pressure.

Results

IRPs reported during retrograde intrarenal surgery (RIRS), PCNL, miniPCNL, and microPCNL range 40.8–199.35, 3–40.8, 10–45 and 15.37–41.21 cm H2O, respectively. By utilizing ureteral access sheaths (UASs) IRPs usually remain lower than 30 cm H2O at an irrigation pressure (IP) of ≤ 100 cm H2O but could increase to > 40 cm H2O at an IP of 200 cm H2O. By utilizing the minimally invasive PCNL system, IRPs remain low at 20 cm H2O even at high IPs. Utilizing endoluminal isoproterenol during RIRS, could reduce IRP increases with a rate of 27–107%, and maintain low IRPs values, usually below 50 cm H2O.

Conclusions

Increased IRP values have been reported during RIRS and UASs constitute the most efficient tool for decreasing them. IRPs during mini-PCNL can be decreased utilizing the vacuum-cleaner and purging effects but might remain uncontrolled during micro- and ultra-mini PCNL. Intraluminal pharmacological treatment could play a role in IRP decrease, with isoproterenol being the most studied agent.

Keywords

Percutaneous nephrolithotomy PCNL Ureteroscopy URS RIRS Irrigation flow Irrigation pressure Intrarenal pressure Intrapelvic pressure Renal-pelvic pressure 

Notes

Author contributions

TT: Data management, data analysis, manuscript writing. AS: Interpreting data. TRWH: Interpreting data. UN: Protocol/project development and Interpreting data.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This review does not involve human participants and/or animals.

References

  1. 1.
    Falagas ME, Pitsouni EI, Malietzis GA, Pappas G (2008) Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses. FASEB J 22(2):338–342.  https://doi.org/10.1096/fj.07-9492LSF CrossRefGoogle Scholar
  2. 2.
    Schwalb DM, Eshghi M, Davidian M, Franco I (1993) Morphological and physiological changes in the urinary tract associated with ureteral dilation and ureteropyeloscopy: an experimental study. J Urol 149(6):1576–1585CrossRefGoogle Scholar
  3. 3.
    Wilson WT, Preminger GM (1990) Intrarenal pressures generated during flexible deflectable ureterorenoscopy. J Endourol 4(2):135–141.  https://doi.org/10.1089/end.1990.4.135 CrossRefGoogle Scholar
  4. 4.
    Rehman J, Monga M, Landman J, Lee DI, Felfela T, Conradie MC, Srinivas R, Sundaram CP, Clayman RV (2003) Characterization of intrapelvic pressure during ureteropyeloscopy with ureteral access sheaths. Urology 61(4):713–718CrossRefGoogle Scholar
  5. 5.
    Auge BK, Pietrow PK, Lallas CD, Raj GV, Santa-Cruz RW, Preminger GM (2004) Ureteral access sheath provides protection against elevated renal pressures during routine flexible ureteroscopic stone manipulation. J Endourol 18(1):33–36.  https://doi.org/10.1089/089277904322836631 CrossRefGoogle Scholar
  6. 6.
    Jung H, Norby B, Frimodt-Moller PC, Osther PJ (2008) Endoluminal isoproterenol irrigation decreases renal pelvic pressure during flexible ureterorenoscopy: a clinical randomized, controlled study. Eur Urol 54(6):1404–1413.  https://doi.org/10.1016/j.eururo.2008.03.092 CrossRefGoogle Scholar
  7. 7.
    Jung HU, Jakobsen JS, Frimodt-Moeller PC, Osther PJ (2008) Irrigation with isoproterenol during ureterorenoscopy causes no systemic side-effects. Scand J Urol Nephrol 42(2):158–163.  https://doi.org/10.1080/00365590701570631 CrossRefGoogle Scholar
  8. 8.
    Cai Y, Li X, Zhu B, Chen R, Ye C, Wang Y, Wang Y, Tao Y, Sun Q, Wen X (2012) A practical pressure measuring method for the upper urinary tract during ureteroscopy. Clin Invest Med 35(5):E322CrossRefGoogle Scholar
  9. 9.
    Shao Y, Shen ZJ, Zhu YY, Sun XW, Lu J, Xia SJ (2012) Fluid-electrolyte and renal pelvic pressure changes during ureteroscopic lithotripsy. Minim Invasive Therapy Allied Technol: MITAT 21(4):302–306.  https://doi.org/10.3109/13645706.2011.595419 CrossRefGoogle Scholar
  10. 10.
    Caballero-Romeu JP, Galan-Llopis JA, Soria F, Morcillo-Martin E, Caballero-Perez P, Garcia A, La De, Cruz-Conty JE, Romero-Maroto J (2018) Micro-ureteroscopy vs. ureteroscopy: effects of miniaturization on renal vascularization and intrapelvic pressure. World J Urol 36(5):811–817.  https://doi.org/10.1007/s00345-018-2205-y CrossRefGoogle Scholar
  11. 11.
    Monga M, Bodie J, Ercole B (2004) Is there a role for small-diameter ureteral access sheaths? Impact on irrigant flow and intrapelvic pressures. Urology 64(3):439–441.  https://doi.org/10.1016/j.urology.2004.04.060 (discussion 441–432) CrossRefGoogle Scholar
  12. 12.
    Ng YH, Somani BK, Dennison A, Kata SG, Nabi G, Brown S (2010) Irrigant flow and intrarenal pressure during flexible ureteroscopy: the effect of different access sheaths, working channel instruments, and hydrostatic pressure. J Endourol 24(12):1915–1920.  https://doi.org/10.1089/end.2010.0188 CrossRefGoogle Scholar
  13. 13.
    Emre Sener T, Cloutier J, Villa L, Marson F, Buttice S, Doizi S, Traxer O (2016) Can we provide low intrarenal pressures with good irrigation flow by decreasing the size of ureteral access sheaths? J Endourol 30(1):49–55.  https://doi.org/10.1089/end.2015.0387 CrossRefGoogle Scholar
  14. 14.
    Sakhadeo NB, Venkatesh R, Trafford P, Parr NJ (1996) A new system of irrigation for ureteroscopy. Br J Urol 78(4):639–640CrossRefGoogle Scholar
  15. 15.
    Lechevallier E, Luciani M, Nahon O, Lay F, Coulange C (2003) Transurethral ureterorenolithotripsy using new automated irrigation/suction system controlling pressure and flow compared with standard irrigation: a randomized pilot study. J Endourol 17(2):97–101.  https://doi.org/10.1089/08927790360587423 CrossRefGoogle Scholar
  16. 16.
    Zhu X, Song L, Xie D, Peng Z, Guo S, Deng X, Liu S, Fan D, Huang J, Liu T, Du C, Zhu L, Yang Z, Peng G, Hu M, Yao L, Zeng M, Zhong J, Qing W, Ye Z (2016) Animal experimental study to test application of intelligent pressure control device in monitoring and control of renal pelvic pressure during flexible ureteroscopy. Urology.  https://doi.org/10.1016/j.urology.2016.02.022 Google Scholar
  17. 17.
    Huang J, Xie D, Xiong R, Deng X, Huang C, Fan D, Peng Z, Qin W, Zeng M, Song L (2018) The application of suctioning flexible ureteroscopy with intelligent pressure control in treating upper urinary tract calculi on patients with a solitary kidney. Urology 111:44–47.  https://doi.org/10.1016/j.urology.2017.07.042 CrossRefGoogle Scholar
  18. 18.
    De S, Torricelli FC, Sarkissian C, Kartha G, Monga M (2014) Evaluating the automated thermedx fluid management system in a ureteroscopy model. J Endourol 28(5):549–553.  https://doi.org/10.1089/end.2013.0697 CrossRefGoogle Scholar
  19. 19.
    Blew BD, Dagnone AJ, Pace KT, Honey RJ (2005) Comparison of Peditrol irrigation device and common methods of irrigation. J Endourol 19(5):562–565.  https://doi.org/10.1089/end.2005.19.562 CrossRefGoogle Scholar
  20. 20.
    Suh LK, Rothberg MB, Landman J, Katsumi H, Gupta M (2010) Intrarenal pressures generated during deployment of various antiretropulsion devices in an ex vivo porcine model. J Endourol 24(7):1165–1168.  https://doi.org/10.1089/end.2010.0118 CrossRefGoogle Scholar
  21. 21.
    Michel MS, Honeck P, Alken P (2008) Conventional high pressure versus newly developed continuous-flow ureterorenoscope: urodynamic pressure evaluation of the renal pelvis and flow capacity. J Endourol 22(5):1083–1085.  https://doi.org/10.1089/end.2008.0016 CrossRefGoogle Scholar
  22. 22.
    Saltzman B, Khasidy LR, Smith AD (1987) Measurement of renal pelvis pressures during endourologic procedures. Urology 30(5):472–474CrossRefGoogle Scholar
  23. 23.
    Goble NM, Hammonds JC (1987) An in vitro study of intracavitary pressures during percutaneous nephrolithotomy. Br J Urol 60(4):307–311CrossRefGoogle Scholar
  24. 24.
    Low RK (1999) Nephroscopy sheath characteristics and intrarenal pelvic pressure: human kidney model. J Endourol 13(3):205–208.  https://doi.org/10.1089/end.1999.13.205 CrossRefGoogle Scholar
  25. 25.
    Troxel SA, Low RK (2002) Renal intrapelvic pressure during percutaneous nephrolithotomy and its correlation with the development of postoperative fever. J Urol 168(4 Pt 1):1348–1351.  https://doi.org/10.1097/01.ju.0000030996.64339.f1 CrossRefGoogle Scholar
  26. 26.
    Guohua Z, Wen Z, Xun L, Wenzhong C, Yongzhong H, Zhaohui H, Ming L, Kaijun W (2007) The influence of minimally invasive percutaneous nephrolithotomy on renal pelvic pressure in vivo. Surg Laparosc Endosc Percutaneous Tech 17(4):307–310.  https://doi.org/10.1097/SLE.0b013e31806e61f4 CrossRefGoogle Scholar
  27. 27.
    Zhong W, Zeng G, Wu K, Li X, Chen W, Yang H (2008) Does a smaller tract in percutaneous nephrolithotomy contribute to high renal pelvic pressure and postoperative fever? J Endourol 22(9):2147–2151.  https://doi.org/10.1089/end.2008.0001 CrossRefGoogle Scholar
  28. 28.
    Tepeler A, Akman T, Silay MS, Akcay M, Ersoz C, Kalkan S, Armagan A, Sarica K (2014) Comparison of intrarenal pelvic pressure during micro-percutaneous nephrolithotomy and conventional percutaneous nephrolithotomy. Urolithiasis 42(3):275–279.  https://doi.org/10.1007/s00240-014-0646-3 CrossRefGoogle Scholar
  29. 29.
    Mager R, Balzereit C, Reiter M, Gust K, Borgmann H, Husch T, Nagele U, Haferkamp A, Schilling D (2015) Introducing a novel in vitro model to characterize hydrodynamic effects of percutaneous nephrolithotomy systems. J Endourol 29(8):929–932.  https://doi.org/10.1089/end.2014.0854 CrossRefGoogle Scholar
  30. 30.
    Landman J, Venkatesh R, Ragab M, Rehman J, Lee DI, Morrissey KG, Monga M, Sundaram CP (2002) Comparison of intrarenal pressure and irrigant flow during percutaneous nephroscopy with an indwelling ureteral catheter, ureteral occlusion balloon, and ureteral access sheath. Urology 60(4):584–587CrossRefGoogle Scholar
  31. 31.
    Alsyouf M, Abourbih S, West B, Hodgson H, Baldwin DD (2018) Elevated renal pelvic pressures during percutaneous nephrolithotomy risk higher postoperative pain and longer hospital stay. J Urol 199(1):193–199.  https://doi.org/10.1016/j.juro.2017.08.039 CrossRefGoogle Scholar
  32. 32.
    Loftus CJ, Hinck B, Makovey I, Sivalingam S, Monga M (2018) Mini versus standard percutaneous nephrolithotomy: the impact of sheath size on intrarenal pelvic pressure and infectious complications in a porcine model. J Endourol 32(4):350–353.  https://doi.org/10.1089/end.2017.0602 CrossRefGoogle Scholar
  33. 33.
    Nagele U, Horstmann M, Sievert KD, Kuczyk MA, Walcher U, Hennenlotter J, Stenzl A, Anastasiadis AG (2007) A newly designed amplatz sheath decreases intrapelvic irrigation pressure during mini-percutaneous nephrolitholapaxy: an in vitro pressure-measurement and microscopic study. J Endourol 21(9):1113–1116.  https://doi.org/10.1089/end.2006.0230 CrossRefGoogle Scholar
  34. 34.
    Nicklas AP, Schilling D, Bader MJ, Herrmann TR, Nagele U (2015) The vacuum cleaner effect in minimally invasive percutaneous nephrolitholapaxy. World J Urol.  https://doi.org/10.1007/s00345-015-1541-4 Google Scholar
  35. 35.
    Nagele U, Walcher U, Bader M, Herrmann T, Kruck S, Schilling D (2015) Flow matters 2: how to improve irrigation flow in small-calibre percutaneous procedures—the purging effect. World J Urol.  https://doi.org/10.1007/s00345-015-1486-7 Google Scholar
  36. 36.
    Song L, Chen Z, Liu T, Zhong J, Qin W, Guo S, Peng Z, Hu M, Du C, Zhu L, Yao L, Yang Z, Huang J, Xie D (2011) The application of a patented system to minimally invasive percutaneous nephrolithotomy. J Endourol 25(8):1281–1286.  https://doi.org/10.1089/end.2011.0032 CrossRefGoogle Scholar
  37. 37.
    Yang Z, Song L, Xie D, Deng X, Zhu L, Fan D, Peng Z, Guo S, Ye Z (2016) The new generation mini-PCNL system—monitoring and controlling of renal pelvic pressure by suctioning device for efficient and safe PCNL in managing renal staghorn calculi. Urol Int.  https://doi.org/10.1159/000442002 Google Scholar
  38. 38.
    Wanajo I, Tomiyama Y, Yamazaki Y, Kojima M, Shibata N (2004) Pharmacological characterization of beta-adrenoceptor subtypes mediating relaxation in porcine isolated ureteral smooth muscle. J Urol 172(3):1155–1159.  https://doi.org/10.1097/01.ju.0000133557.39515.b6 CrossRefGoogle Scholar
  39. 39.
    Tomiyama Y, Hayakawa K, Shinagawa K, Akahane M, Ajisawa Y, Park YC, Kurita T (1998) Beta-adrenoceptor subtypes in the ureteral smooth muscle of rats, rabbits and dogs. Eur J Pharmacol 352(2–3):269–278CrossRefGoogle Scholar
  40. 40.
    Park YC, Tomiyama Y, Hayakawa K, Akahane M, Ajisawa Y, Miyatake R, Kiwamoto H, Sugiyama T, Kurita T (2000) Existence of a beta3-adrenoceptro and its functional role in the human ureter. J Urol 164(4):1364–1370CrossRefGoogle Scholar
  41. 41.
    Selmy GI, Hassouna MM, Khalaf IM, Elhilali MM (1994) Effects of verapamil, prostaglandin F2 alpha, phenylephrine, and noradrenaline on upper urinary tract dynamics. Urology 43(1):31–35CrossRefGoogle Scholar
  42. 42.
    Holst U, Dissing T, Rawashdeh YF, Frokiaer J, Djurhuus JC, Mortensen J (2003) Norepinephrine inhibits the pelvic pressure increase in response to flow perfusion. J Urol 170(1):268–271.  https://doi.org/10.1097/01.ju.0000069824.13258.14 CrossRefGoogle Scholar
  43. 43.
    Holst U, Rawashdeh YF, Andreasen F, Christian Djurhuus J, Mortensen J (2005) Endoluminal pelvic perfusion with norepinephrine causes only minor systemic effects and diminishes the increase in pelvic pressure caused by perfusion. Scand J Urol Nephrol 39(6):443–448.  https://doi.org/10.1080/00365590500221469 CrossRefGoogle Scholar
  44. 44.
    Jakobsen JS, Holst U, Jakobsen P, Steen W, Mortensen J (2007) Local and systemic effects of endoluminal pelvic perfusion of isoproterenol: a dose response investigation in pigs. J Urol 177(5):1934–1938.  https://doi.org/10.1016/j.juro.2007.01.020 CrossRefGoogle Scholar
  45. 45.
    Mortensen J, Holst U, Jakobsen JS, Andreasen F (2008) Endoluminal norepinephrine inhibits smooth muscle activity of the pig pyeloureter by stimulation of beta-adrenoceptors without side effects. Basic Clin Pharmacol Toxicol 103(5):455–460.  https://doi.org/10.1111/j.1742-7843.2008.00297.x CrossRefGoogle Scholar
  46. 46.
    Jung HU, Jakobsen JS, Mortensen J, Osther PJ, Djurhuus JC (2008) Irrigation with isoproterenol diminishes increases in pelvic pressure without side-effects during ureterorenoscopy: a randomized controlled study in a porcine model. Scand J Urol Nephrol 42(1):7–11.  https://doi.org/10.1080/00365590701520073 CrossRefGoogle Scholar
  47. 47.
    Jakobsen JS, Jung HU, Gramsbergen JB, Osther PJ, Walter S (2010) Endoluminal isoproterenol reduces renal pelvic pressure during semirigid ureterorenoscopy: a porcine model. BJU Int 105(1):121–124.  https://doi.org/10.1111/j.1464-410X.2009.08678.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Urology and AndrologyGeneral Hospital Hall in TirolHall in TirolAustria
  2. 2.Second Department of Urology, Sismanoglio General HospitalAthens Medical SchoolAthensGreece
  3. 3.Department of Urology, Kantonspital FrauenfeldSpital Thurgau AGFrauenfeldSwitzerland

Personalised recommendations