World Journal of Urology

, Volume 37, Issue 2, pp 221–234 | Cite as

Impact of multiparametric MRI and MRI-targeted biopsy on pre-therapeutic risk assessment in prostate cancer patients candidate for radical prostatectomy

  • Paolo Dell’Oglio
  • Armando Stabile
  • Brendan Hermenigildo Dias
  • Giorgio Gandaglia
  • Elio Mazzone
  • Nicola Fossati
  • Vito Cucchiara
  • Emanuele Zaffuto
  • Vincenzo Mirone
  • Nazareno Suardi
  • Alexandre Mottrie
  • Francesco Montorsi
  • Alberto BrigantiEmail author
Topic Paper



To assess the current status and future potential of multiparametric MRI (mpMRI) and MRI-targeted biopsy (MRI-TBx) on the pretherapeutic risk assessment in prostate cancer patients’ candidates for radical prostatectomy.


A literature search of the MEDLINE/PubMed and Scopus database was performed. English-language original and review articles were analyzed and summarized after an interactive peer-review process of the panel.


Pretherapeutic risk assessment tools should be based on target plus systematic biopsies, where the addition of systematic biopsy (TRUS-Bx) to the mpMRI-target cores is associated with a lower rate of upgrading at final pathology. The combination of mpMRI findings with clinical parameters outperforms models based on clinical parameters alone in the prediction of adverse pathological outcomes and oncological results. This is particularly true when a specialized radiologist is present.


The combination of mpMRI findings and clinical parameters should be considered to improve patient stratification in the pretherapeutic risk assessment. There is an urgent need to develop or include MRI data and MRI-TBx findings in available preoperative risk tools. This will allow improving the pretherapeutic risk assessment, providing important additional information for patient-tailored treatment planning and optimizing outcomes.


Prostate cancer Magnetic resonance imaging Targeted biopsy Risk assessment Review 


Author contributions

PD: data collection and manuscript writing; AS: data collection and manuscript writing; BHD: data collection and manuscript writing; GG: manuscript editing and critical revision for important intellectual content; EM: manuscript editing and critical revision for important intellectual content; NF: manuscript editing and critical revision for important intellectual content; VC: manuscript editing and critical revision for important intellectual content; EZ: manuscript editing and critical revision for important intellectual content; VM: manuscript editing and critical revision for important intellectual content;NS: supervision and critical revision for important intellectual content; AM: supervision and critical revision for important intellectual content; FM: supervision and critical revision for important intellectual content; AB: supervision, manuscript writing.


This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Guidelines on prostate cancer (2018) European Association of Urology. Accessed Mar 2018
  2. 2.
    National Comprehensive Cancer Network (2017) Clinical practice guidelines in oncology (NCCN Guidelines®). Prostate cancer. Accessed Mar 2018
  3. 3.
    Gontero P, Kirby RS (2005) Nerve-sparing radical retropubic prostatectomy: techniques and clinical considerations. Prostate Cancer Prostatic Dis 8:133–139Google Scholar
  4. 4.
    Sokoloff MH, Brendler CB (2001) Indications and contraindications for nerve-sparing radical prostatectomy. Urol Clin North Am 28:535–543Google Scholar
  5. 5.
    Suardi N, Larcher A, Haese A et al (2014) Indication for and extension of pelvic lymph node dissection during robot-assisted radical prostatectomy: an analysis of five European institutions. Eur Urol 66:635–643Google Scholar
  6. 6.
    de Rooij M, Hamoen EH, Witjes JA, Barentsz JO, Rovers MM (2016) Accuracy of magnetic resonance imaging for local staging of prostate cancer: a diagnostic Meta-analysis. Eur Urol 70:233–245Google Scholar
  7. 7.
    Hovels AM, Heesakkers RA, Adang EM et al (2008) The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol 63:387–395Google Scholar
  8. 8.
    Steuber T, Graefen M, Haese A et al (2006) Validation of a nomogram for prediction of side specific extracapsular extension at radical prostatectomy. J Urol 175:939–944 [discussion 44] Google Scholar
  9. 9.
    Eifler JB, Feng Z, Lin BM et al (2013) An updated prostate cancer staging nomogram (Partin tables) based on cases from 2006 to 2011. BJU Int 111:22–29Google Scholar
  10. 10.
    Memorial sloan kettering cancer center. Prostate cancer nomograms pre-radical prostatectomy. Accessed Feb 2018
  11. 11.
    Briganti A, Larcher A, Abdollah F et al (2012) Updated nomogram predicting lymph node invasion in patients with prostate cancer undergoing extended pelvic lymph node dissection: the essential importance of percentage of positive cores. Eur Urol 61:480–487Google Scholar
  12. 12.
    Futterer JJ, Briganti A, De Visschere P et al (2015) Can clinically significant prostate cancer be detected with multiparametric magnetic resonance imaging? A systematic review of the literature. Eur Urol 68:1045–1053Google Scholar
  13. 13.
    Ahmed HU, El-Shater Bosaily A, Brown LC et al (2017) Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389:815–822Google Scholar
  14. 14.
    Simmons LAM, Kanthabalan A, Arya M et al (2017) The PICTURE study: diagnostic accuracy of multiparametric MRI in men requiring a repeat prostate biopsy. Br J Cancer 116:1159–1165Google Scholar
  15. 15.
    Schoots IG, Roobol MJ, Nieboer D, Bangma CH, Steyerberg EW, Hunink MG (2015) Magnetic resonance imaging-targeted biopsy may enhance the diagnostic accuracy of significant prostate cancer detection compared to standard transrectal ultrasound-guided biopsy: a systematic review and meta-analysis. Eur Urol 68:438–450Google Scholar
  16. 16.
    Siddiqui MM, Rais-Bahrami S, Turkbey B et al (2015) Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA 313:390–397Google Scholar
  17. 17.
    van Hove A, Savoie PH, Maurin C et al (2014) Comparison of image-guided targeted biopsies versus systematic randomized biopsies in the detection of prostate cancer: a systematic literature review of well-designed studies. World J Urol 32:847–858Google Scholar
  18. 18.
    Valerio M, Donaldson I, Emberton M et al (2015) Detection of clinically significant prostate cancer using magnetic resonance imaging-ultrasound fusion targeted biopsy: a systematic review. Eur Urol 68:8–19Google Scholar
  19. 19.
    Wegelin O, van Melick HHE, Hooft L et al (2017) Comparing three different techniques for magnetic resonance imaging-targeted prostate biopsies: a systematic review of in-bore versus magnetic resonance imaging-transrectal ultrasound fusion versus cognitive registration. is there a preferred technique? Eur Urol 71:517–531Google Scholar
  20. 20.
    Distler FA, Radtke JP, Bonekamp D et al (2017) The value of PSA density in combination with PI-RADS for the accuracy of prostate cancer prediction. J Urol 198:575–582Google Scholar
  21. 21.
    Radtke JP, Wiesenfarth M, Kesch C et al (2017) Combined clinical parameters and multiparametric magnetic resonance imaging for advanced risk modeling of prostate cancer-patient-tailored risk stratification can reduce unnecessary biopsies. Eur Urol 72:888–896Google Scholar
  22. 22.
    van Leeuwen PJ, Hayen A, Thompson JE et al (2017) A multiparametric magnetic resonance imaging-based risk model to determine the risk of significant prostate cancer prior to biopsy. BJU Int 120:774–781Google Scholar
  23. 23.
    Bjurlin MA, Rosenkrantz AB, Sarkar S et al (2018) Prediction of prostate cancer risk among men undergoing combined MRI-targeted and systematic biopsy using novel pre-biopsy nomograms that incorporate MRI findings. Urology 112:112–120Google Scholar
  24. 24.
    Mehralivand S, Shih JH, Rais-Bahrami S et al (2018) A magnetic resonance imaging-based prediction model for prostate biopsy risk stratification. JAMA Oncol 4:678–685Google Scholar
  25. 25.
    Kasivisvanathan V, Rannikko AS, Borghi M et al (2018) MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis. N Engl J Med. 378:1767–1777Google Scholar
  26. 26.
    Porpiglia F, Manfredi M, Mele F et al (2017) Diagnostic pathway with multiparametric magnetic resonance imaging versus standard pathway: results from a randomized prospective study in biopsy-naive patients with suspected prostate cancer. Eur Urol 72:282–288Google Scholar
  27. 27.
    Tonttila PP, Lantto J, Paakko E et al (2016) Prebiopsy multiparametric magnetic resonance imaging for prostate cancer diagnosis in biopsy-naive men with suspected prostate cancer based on elevated prostate-specific antigen values: results from a randomized prospective blinded controlled trial. Eur Urol 69:419–425Google Scholar
  28. 28.
    Baco E, Rud E, Eri LM et al (2016) A randomized controlled trial to assess and compare the outcomes of two-core prostate biopsy guided by fused magnetic resonance and transrectal ultrasound images and traditional 12-core systematic biopsy. Eur Urol 69:149–156Google Scholar
  29. 29.
    Arsov C, Rabenalt R, Blondin D et al (2015) Prospective randomized trial comparing magnetic resonance imaging (MRI)-guided in-bore biopsy to MRI-ultrasound fusion and transrectal ultrasound-guided prostate biopsy in patients with prior negative biopsies. Eur Urol 68:713–720Google Scholar
  30. 30.
    Le JD, Tan N, Shkolyar E et al (2015) Multifocality and prostate cancer detection by multiparametric magnetic resonance imaging: correlation with whole-mount histopathology. Eur Urol 67:569–576Google Scholar
  31. 31.
    Borkowetz A, Platzek I, Toma M et al (2016) Direct comparison of multiparametric magnetic resonance imaging (MRI) results with final histopathology in patients with proven prostate cancer in MRI/ultrasonography-fusion biopsy. BJU Int 118:213–220Google Scholar
  32. 32.
    Radtke JP, Schwab C, Wolf MB et al (2016) Multiparametric magnetic resonance imaging (MRI) and MRI-transrectal ultrasound fusion biopsy for index tumor detection: correlation with radical prostatectomy specimen. Eur Urol 70:846–853Google Scholar
  33. 33.
    Arsov C, Becker N, Rabenalt R et al (2015) The use of targeted MR-guided prostate biopsy reduces the risk of Gleason upgrading on radical prostatectomy. J Cancer Res Clin Oncol 141:2061–2068Google Scholar
  34. 34.
    Rud E, Baco E, Klotz D et al (2015) Does preoperative magnetic resonance imaging reduce the rate of positive surgical margins at radical prostatectomy in a randomised clinical trial? Eur Urol 68:487–496Google Scholar
  35. 35.
    Feng TS, Sharif-Afshar AR, Wu J et al (2015) Multiparametric MRI improves accuracy of clinical nomograms for predicting extracapsular extension of prostate cancer. Urology. 86:332–337Google Scholar
  36. 36.
    Morlacco A, Sharma V, Viers BR et al (2017) The incremental role of magnetic resonance imaging for prostate cancer staging before radical prostatectomy. Eur Urol 71:701–704Google Scholar
  37. 37.
    Grivas N, Hinnen K, de Jong J et al (2018) Seminal vesicle invasion on multi-parametric magnetic resonance imaging: correlation with histopathology. Eur J Radiol 98:107–112Google Scholar
  38. 38.
    Tay KJ, Gupta RT, Brown AF, Silverman RK, Polascik TJ (2016) Defining the incremental utility of prostate multiparametric magnetic resonance imaging at standard and specialized read in predicting extracapsular extension of prostate cancer. Eur Urol 70:211–213Google Scholar
  39. 39.
    Weaver JK, Kim EH, Vetter JM et al (2018) Prostate magnetic resonance imaging provides limited incremental value over the memorial sloan kettering cancer center preradical prostatectomy nomogram. Urology 113:119–128Google Scholar
  40. 40.
    Giganti F, Coppola A, Ambrosi A et al (2016) Apparent diffusion coefficient in the evaluation of side-specific extracapsular extension in prostate cancer: development and external validation of a nomogram of clinical use. Urol Oncol 34(291):e9–e17Google Scholar
  41. 41.
    Woo S, Cho JY, Kim SY, Kim SH (2015) Extracapsular extension in prostate cancer: added value of diffusion-weighted MRI in patients with equivocal findings on T2-weighted imaging. AJR Am J Roentgenol 204:W168–W175Google Scholar
  42. 42.
    Toner L, Papa N, Perera M et al (2017) Multiparametric magnetic resonance imaging for prostate cancer-a comparative study including radical prostatectomy specimens. World J Urol 35:935–941Google Scholar
  43. 43.
    Park SY, Jung DC, Oh YT et al (2016) Prostate cancer: PI-RADS version 2 helps preoperatively predict clinically significant cancers. Radiology 280:108–116Google Scholar
  44. 44.
    Weinreb JC, Barentsz JO, Choyke PL et al (2016) PI-RADS prostate imaging—reporting and data system: 2015, version 2. Eur Urol 69:16–40Google Scholar
  45. 45.
    Barentsz JO, Richenberg J, Clements R et al (2012) ESUR prostate MR guidelines 2012. Eur Radiol 22:746–757Google Scholar
  46. 46.
    Schieda N, Quon JS, Lim C et al (2015) Evaluation of the european society of urogenital radiology (ESUR) PI-RADS scoring system for assessment of extra-prostatic extension in prostatic carcinoma. Eur J Radiol 84:1843–1848Google Scholar
  47. 47.
    Riney JC, Sarwani NE, Siddique S, Raman JD (2018) Prostate magnetic resonance imaging: the truth lies in the eye of the beholder. Urologic oncology. 36(159):e1–e5Google Scholar
  48. 48.
    Raskolnikov D, George AK, Rais-Bahrami S et al (2015) The Role of Magnetic Resonance Image Guided Prostate Biopsy in Stratifying Men for Risk of Extracapsular Extension at Radical Prostatectomy. J Urol 194:105–111Google Scholar
  49. 49.
    Wang L, Hricak H, Kattan MW et al (2006) Combined endorectal and phased-array MRI in the prediction of pelvic lymph node metastasis in prostate cancer. AJR Am J Roentgenol 186:743–748Google Scholar
  50. 50.
    Park SY, Oh YT, Jung DC, Cho NH, Choi YD, Rha KH (2015) Prediction of micrometastasis (< 1 cm) to pelvic lymph nodes in prostate cancer: role of preoperative MRI. AJR Am J Roentgenol 205:W328–W334Google Scholar
  51. 51.
    Brembilla G, Dell’Oglio P, Stabile A et al (2017) Preoperative multiparametric MRI of the prostate for the prediction of lymph node metastases in prostate cancer patients treated with extended pelvic lymph node dissection. Eur Radiol 28:1969–1976Google Scholar
  52. 52.
    Porpiglia F, Manfredi M, Mele F et al (2018) Indication to pelvic lymph nodes dissection for prostate cancer: the role of multiparametric magnetic resonance imaging when the risk of lymph nodes invasion according to Briganti updated nomogram is < 5. Prostate cancer prostatic Dis 21:85–91Google Scholar
  53. 53.
    Park JJ, Kim CK, Park SY, Park BK, Lee HM, Cho SW (2014) Prostate cancer: role of pretreatment multiparametric 3-T MRI in predicting biochemical recurrence after radical prostatectomy. AJR Am J Roentgenol 202:W459–W465Google Scholar
  54. 54.
    Ho R, Siddiqui MM, George AK et al (2016) Preoperative multiparametric magnetic resonance imaging predicts biochemical recurrence in prostate cancer after radical prostatectomy. PLoS One 11:e0157313Google Scholar
  55. 55.
    Zhang YD, Wang J, Wu CJ et al (2016) An imaging-based approach predicts clinical outcomes in prostate cancer through a novel support vector machine classification. Oncotarget 7:78140–78151Google Scholar
  56. 56.
    Zhang YD, Wu CJ, Bao ML et al (2017) MR-based prognostic nomogram for prostate cancer after radical prostatectomy. J Magn Reson Imaging JMRI 45:586–596Google Scholar
  57. 57.
    Tan N, Shen L, Khoshnoodi P et al (2017) Pathological and 3 Tesla Volumetric Magnetic Resonance Imaging Predictors of Biochemical Recurrence after Robotic Assisted Radical Prostatectomy: Correlation with Whole Mount Histopathology. J Urol 199:1218–1223Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Paolo Dell’Oglio
    • 1
    • 2
    • 3
  • Armando Stabile
    • 1
  • Brendan Hermenigildo Dias
    • 2
    • 3
  • Giorgio Gandaglia
    • 1
  • Elio Mazzone
    • 1
  • Nicola Fossati
    • 1
  • Vito Cucchiara
    • 1
  • Emanuele Zaffuto
    • 1
  • Vincenzo Mirone
    • 4
  • Nazareno Suardi
    • 1
  • Alexandre Mottrie
    • 2
    • 3
  • Francesco Montorsi
    • 1
  • Alberto Briganti
    • 1
    Email author
  1. 1.Department of Urology and Division of Experimental Oncology, IRCCS San Raffaele Scientific InstituteUrological Research Institute (URI)MilanItaly
  2. 2.Department of UrologyOLV AalstAalstBelgium
  3. 3.ORSI AcademyMelleBelgium
  4. 4.Department of UrologyFederico II UniversityNaplesItaly

Personalised recommendations