World Journal of Urology

, Volume 36, Issue 12, pp 1943–1952 | Cite as

Prognostic factors and prognostic models for renal cell carcinoma: a literature review

  • Tobias KlatteEmail author
  • Sabrina H. Rossi
  • Grant D. Stewart
Invited Review



Following curative treatment for localised renal cell carcinoma (RCC), up to 30% of patients develop tumour recurrence. Prognostic scores are essential to guide individualised surveillance protocols, patient counselling and potentially in the future to guide adjuvant therapy. In metastatic RCC, prognostic scores are routinely used for treatment selection in clinical practice as well as in all major trials.


We performed a literature review on the current evidence based on prognostic factors and models for localised and metastatic RCC.


A number of prognostic factors have been identified, of which tumour node metastasis classification remains the most important. Multiple prognostic models and nomograms have been developed for localised disease, based on a combination of tumour stage, grade, subtype, clinical features, and performance status. However, there is poor level of evidence for their routine use. Prognostic scores for patients with metastatic RCC receiving targeted treatments are used routinely, but have limited accuracy. Molecular markers can improve the accuracy of established prognostic models, but frequently lack external, independent validation.


Several factors and models predict prognosis of localised and metastatic RCC. They represent valuable tools to provide estimates of clinically important endpoints, but their accuracy should be improved further. Validation of molecular markers is a future research priority.


Renal cancer Prognosis Predictive Markers Biomarkers 


Author contributions

TK: project development, data collection, data analysis, manuscript writing and editing. SHR: data analysis, manuscript editing. GDS: project development, data analysis, manuscript editing, supervision.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no relevant conflicts of interest.

Research involving human participants and/or animals

The following manuscript is a review of existing data. Therefore, this article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study (review), formal consent is not required.


  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ljungberg B, Bensalah K, Canfield S et al (2015) EAU guidelines on renal cell carcinoma: 2014 update. Eur Urol 67:913–924CrossRefPubMedGoogle Scholar
  3. 3.
    Lucca I, de Martino M, Hofbauer SL et al (2015) Comparison of the prognostic value of pretreatment measurements of systemic inflammatory response in patients undergoing curative resection of clear cell renal cell carcinoma. World J Urol 33:2045–2052CrossRefPubMedGoogle Scholar
  4. 4.
    Haas NB, Manola J, Uzzo RG et al (2016) Adjuvant sunitinib or sorafenib for high-risk, non-metastatic renal-cell carcinoma (ECOG-ACRIN E2805): a double-blind, placebo-controlled, randomised, phase 3 trial. Lancet 387:2008–2016CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lam JS, Shvarts O, Leppert JT et al (2005) Postoperative surveillance protocol for patients with localized and locally advanced renal cell carcinoma based on a validated prognostic nomogram and risk group stratification system. J Urol 174:466–472CrossRefPubMedGoogle Scholar
  6. 6.
    Bex A, Albiges L, Ljungberg B et al (2017) Updated European Association of Urology guidelines regarding adjuvant therapy for renal cell carcinoma. Eur Urol 71:719–722CrossRefPubMedGoogle Scholar
  7. 7.
    Ballman KV (2015) Biomarker: predictive or prognostic? J Clin Oncol 33:3968–3971CrossRefPubMedGoogle Scholar
  8. 8.
    Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV AIDS 5:463–466CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kramar A, Negrier S, Sylvester R et al (2015) Guidelines for the definition of time-to-event end points in renal cell cancer clinical trials: results of the DATECAN project. Ann Oncol 26:2392–2398PubMedGoogle Scholar
  10. 10.
    Sun M, Shariat SF, Cheng C et al (2011) Prognostic factors and predictive models in renal cell carcinoma: a contemporary review. Eur Urol 60:644–661CrossRefPubMedGoogle Scholar
  11. 11.
    Keegan KA, Schupp CW, Chamie K et al (2012) Histopathology of surgically treated renal cell carcinoma: survival differences by subtype and stage. J Urol 188:391–397CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Manola J, Royston P, Elson P et al (2011) Prognostic model for survival in patients with metastatic renal cell carcinoma: results from the international kidney cancer working group. Clin Cancer Res 17:5443–5450CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Klatte T, Fife K, Welsh SJ et al (2018) Prognostic effect of cytoreductive nephrectomy in synchronous metastatic renal cell carcinoma: a comparative study using inverse probability of treatment weighting. World J Urol 36:417–425CrossRefPubMedGoogle Scholar
  14. 14.
    Ljungberg B, Albiges L, Bensalah K, et al (2018) EAU guidelines on renal cell carcinoma. Accessed 1 Apr 2018
  15. 15.
    Fuhrman SA, Lasky LC, Limas C (1982) Prognostic significance of morphologic parameters in renal cell carcinoma. Am J Surg Pathol 6:655–663CrossRefPubMedGoogle Scholar
  16. 16.
    Ficarra V, Martignoni G, Maffei N et al (2005) Original and reviewed nuclear grading according to the Fuhrman system: a multivariate analysis of 388 patients with conventional renal cell carcinoma. Cancer 103:68–75CrossRefPubMedGoogle Scholar
  17. 17.
    Rioux-Leclercq N, Karakiewicz PI, Trinh Q-D et al (2007) Prognostic ability of simplified nuclear grading of renal cell carcinoma. Cancer 109:868–874CrossRefPubMedGoogle Scholar
  18. 18.
    Sun M, Lughezzani G, Jeldres C et al (2009) A proposal for reclassification of the Fuhrman grading system in patients with clear cell renal cell carcinoma. Eur Urol 56:775–781CrossRefPubMedGoogle Scholar
  19. 19.
    Delahunt B, Cheville JC, Martignoni G et al (2013) The International Society of Urological Pathology (ISUP) grading system for renal cell carcinoma and other prognostic parameters. Am J Surg Pathol 37:1490–1504CrossRefPubMedGoogle Scholar
  20. 20.
    Moch H, Cubilla AL, Humphrey PA et al (2016) The 2016 WHO classification of tumours of the urinary system and male genital organs—part A: renal, penile, and testicular tumours. Eur Urol 70:93–105CrossRefPubMedGoogle Scholar
  21. 21.
    Patard J-J, Leray E, Rioux-Leclercq N et al (2005) Prognostic value of histologic subtypes in renal cell carcinoma: a multicenter experience. J Clin Oncol 23:2763–2771CrossRefPubMedGoogle Scholar
  22. 22.
    Klatte T, Han K, Said JW et al (2008) Pathobiology and prognosis of chromophobe renal cell carcinoma. Urol Oncol 26:604–609CrossRefPubMedGoogle Scholar
  23. 23.
    Nguyen DP, Vilaseca A, Vertosick EA et al (2016) Histologic subtype impacts cancer-specific survival in patients with sarcomatoid-variant renal cell carcinoma treated surgically. World J Urol 34:539–544CrossRefPubMedGoogle Scholar
  24. 24.
    Delahunt B, Eble JN (1997) Papillary renal cell carcinoma: a clinicopathologic and immunohistochemical study of 105 tumors. Mod Pathol Off J US Can Acad Pathol Inc 10:537–544Google Scholar
  25. 25.
    Alomari AK, Nettey OS, Singh D et al (2015) Clinicopathological and immunohistochemical characteristics of papillary renal cell carcinoma with emphasis on subtyping. Hum Pathol 46:1418–1426CrossRefPubMedGoogle Scholar
  26. 26.
    Klatte T, Pantuck AJ, Said JW et al (2009) Cytogenetic and molecular tumor profiling for type 1 and type 2 papillary renal cell carcinoma. Clin Cancer Res Off J Am Assoc Cancer Res 15:1162–1169CrossRefGoogle Scholar
  27. 27.
    Ledezma RA, Negron E, Paner GP et al (2016) Clinically localized type 1 and 2 papillary renal cell carcinomas have similar survival outcomes following surgery. World J Urol 34:687–693CrossRefPubMedGoogle Scholar
  28. 28.
    Bigot P, Bernhard J-C, Gill IS et al (2016) The subclassification of papillary renal cell carcinoma does not affect oncological outcomes after nephron sparing surgery. World J Urol 34:347–352CrossRefPubMedGoogle Scholar
  29. 29.
    Leibovich BC, Lohse CM, Cheville JC et al (2018) Predicting oncologic outcomes in renal cell carcinoma after surgery. Eur Urol 73(5):772–780CrossRefPubMedGoogle Scholar
  30. 30.
    Bedke J, Heide J, Ribback S et al (2018) Microvascular and lymphovascular tumour invasion are associated with poor prognosis and metastatic spread in renal cell carcinoma: a validation study in clinical practice. BJU Int 121:84–92CrossRefPubMedGoogle Scholar
  31. 31.
    Huang H, Pan X-W, Huang Y et al (2015) Microvascular invasion as a prognostic indicator in renal cell carcinoma: a systematic review and meta-analysis. Int J Clin Exp Med 8:10779–10792PubMedPubMedCentralGoogle Scholar
  32. 32.
    Sengupta S, Lohse CM, Leibovich BC et al (2005) Histologic coagulative tumor necrosis as a prognostic indicator of renal cell carcinoma aggressiveness. Cancer 104:511–520CrossRefPubMedGoogle Scholar
  33. 33.
    Klatte T, Said JW, de Martino M et al (2009) Presence of tumor necrosis is not a significant predictor of survival in clear cell renal cell carcinoma: higher prognostic accuracy of extent based rather than presence/absence classification. J Urol 181:1558–1564CrossRefPubMedGoogle Scholar
  34. 34.
    Heng DYC, Xie W, Regan MM et al (2009) Prognostic factors for overall survival in patients with metastatic renal cell carcinoma treated with vascular endothelial growth factor-targeted agents: results from a large, multicenter study. J Clin Oncol 27:5794–5799CrossRefPubMedGoogle Scholar
  35. 35.
    Motzer RJ, Bacik J, Murphy BA et al (2002) Interferon-alfa as a comparative treatment for clinical trials of new therapies against advanced renal cell carcinoma. J Clin Oncol 20:289–296CrossRefPubMedGoogle Scholar
  36. 36.
    Pichler M, Hutterer GC, Stoeckigt C et al (2013) Validation of the pre-treatment neutrophil-lymphocyte ratio as a prognostic factor in a large European cohort of renal cell carcinoma patients. Br J Cancer 108:901–907CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    de Martino M, Klatte T, Seemann C et al (2013) Validation of serum C-reactive protein (CRP) as an independent prognostic factor for disease-free survival in patients with localised renal cell carcinoma (RCC). BJU Int 111:E348–E353CrossRefPubMedGoogle Scholar
  38. 38.
    Ingels A, Hew M, Algaba F et al (2017) Vimentin over-expression and carbonic anhydrase IX under-expression are independent predictors of recurrence, specific and overall survival in non-metastatic clear-cell renal carcinoma: a validation study. World J Urol 35:81–87CrossRefPubMedGoogle Scholar
  39. 39.
    de Martino M, Haitel A, Schatzl G, Klatte T (2013) The protease activated receptor 1 gene variation IVSn-14 A > T is associated with distant metastasis and cancer specific survival in renal cell carcinoma. J Urol 190:1392–1397CrossRefPubMedGoogle Scholar
  40. 40.
    Stewart GD, O’Mahony FC, Laird A et al (2014) Carbonic anhydrase 9 expression increases with vascular endothelial growth factor-targeted therapy and is predictive of outcome in metastatic clear cell renal cancer. Eur Urol 66:956–963CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Sim SH, Messenger MP, Gregory WM et al (2012) Prognostic utility of pre-operative circulating osteopontin, carbonic anhydrase IX and CRP in renal cell carcinoma. Br J Cancer 107:1131–1137CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Pantuck AJ, Seligson DB, Klatte T et al (2007) Prognostic relevance of the mTOR pathway in renal cell carcinoma: implications for molecular patient selection for targeted therapy. Cancer 109:2257–2267CrossRefPubMedGoogle Scholar
  43. 43.
    Klatte T, Seligson DB, Riggs SB et al (2007) Hypoxia-inducible factor 1 alpha in clear cell renal cell carcinoma. Clin Cancer Res 13:7388–7393CrossRefPubMedGoogle Scholar
  44. 44.
    Joseph RW, Kapur P, Serie DJ et al (2014) Loss of BAP1 protein expression is an independent marker of poor prognosis in patients with low-risk clear cell renal cell carcinoma. Cancer 120:1059–1067CrossRefPubMedGoogle Scholar
  45. 45.
    Miao D, Margolis CA, Gao W et al (2018) Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 359:801–806CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    George DJ, Martini J-F, Staehler M et al (2018) Immune biomarkers predictive for disease-free survival with adjuvant sunitinib in high-risk locoregional renal cell carcinoma: from randomized phase III S-TRAC study. Clin Cancer Res Off J Am Assoc Cancer Res. CrossRefGoogle Scholar
  47. 47.
    Steyerberg EW, Moons KGM, van der Windt DA et al (2013) Prognosis research strategy (PROGRESS) 3: prognostic model research. PLoS Med 10(2):e1001381. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    de Martino M, Leitner CV, Seemann C et al (2015) Preoperative serum cholesterol is an independent prognostic factor for patients with renal cell carcinoma (RCC). BJU Int 115:397–404CrossRefPubMedGoogle Scholar
  49. 49.
    de Martino M, Klatte T, Seemann C et al (2013) Validation of serum C-reactive protein (CRP) as an independent prognostic factor for disease-free survival in patients with localised renal cell carcinoma (RCC). BJU Int 111:E348–E353CrossRefPubMedGoogle Scholar
  50. 50.
    Hofbauer SL, Stangl KI, de Martino M et al (2014) Pretherapeutic gamma-glutamyltransferase is an independent prognostic factor for patients with renal cell carcinoma. Br J Cancer 111:1526–1531CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Shim SR, Kim SJ, Kim SI, Cho DS (2017) Prognostic value of the glasgow prognostic score in renal cell carcinoma: a meta-analysis. World J Urol 35:771–780CrossRefPubMedGoogle Scholar
  52. 52.
    Moreira DM, Gershman B, Lohse CM et al (2016) Paraneoplastic syndromes are associated with adverse prognosis among patients with renal cell carcinoma undergoing nephrectomy. World J Urol 34:1465–1472CrossRefPubMedGoogle Scholar
  53. 53.
    Hu H, Yao X, Xie X et al (2017) Prognostic value of preoperative NLR, dNLR, PLR and CRP in surgical renal cell carcinoma patients. World J Urol 35:261–270CrossRefPubMedGoogle Scholar
  54. 54.
    Vickers AJ, Cronin AM (2010) Everything you always wanted to know about evaluating prediction models (but were too afraid to ask). Urology 76:1298–1301CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Frank I, Blute ML, Cheville JC et al (2002) An outcome prediction model for patients with clear cell renal cell carcinoma treated with radical nephrectomy based on tumor stage, size, grade and necrosis: the SSIGN score. J Urol 168:2395–2400CrossRefPubMedGoogle Scholar
  56. 56.
    Parker WP, Cheville JC, Frank I et al (2017) Application of the stage, size, grade, and necrosis (SSIGN) score for clear cell renal cell carcinoma in contemporary patients. Eur Urol 71:665–673CrossRefPubMedGoogle Scholar
  57. 57.
    Karakiewicz PI, Briganti A, Chun FK-H et al (2007) Multi-institutional validation of a new renal cancer-specific survival nomogram. J Clin Oncol 25:1316–1322CrossRefPubMedGoogle Scholar
  58. 58.
    Leibovich BC, Blute ML, Cheville JC et al (2003) Prediction of progression after radical nephrectomy for patients with clear cell renal cell carcinoma: a stratification tool for prospective clinical trials. Cancer 97:1663–1671CrossRefPubMedGoogle Scholar
  59. 59.
    Zisman A, Pantuck AJ, Wieder J et al (2002) Risk group assessment and clinical outcome algorithm to predict the natural history of patients with surgically resected renal cell carcinoma. J Clin Oncol 20:4559–4566CrossRefPubMedGoogle Scholar
  60. 60.
    Borghesi M, Brunocilla E, Schiavina R, Martorana G (2013) Positive surgical margins after nephron-sparing surgery for renal cell carcinoma: incidence, clinical impact, and management. Clin Genitourin Cancer 11:5–9. CrossRefPubMedGoogle Scholar
  61. 61.
    Karellas ME, Jang TL, Kagiwada MA et al (2009) Advanced-stage renal cell carcinoma treated by radical nephrectomy and adjacent organ or structure resection. BJU Int 103:160–164CrossRefPubMedGoogle Scholar
  62. 62.
    Liu NW, Wren JD, Vertosick E et al (2016) The prognostic impact of a positive vascular margin on pT3 clear cell renal cell carcinoma. J Urol 195:264–269CrossRefPubMedGoogle Scholar
  63. 63.
    Tan M-H, Kanesvaran R, Li H et al (2010) Comparison of the UCLA Integrated Staging System and the Leibovich score in survival prediction for patients with nonmetastatic clear cell renal cell carcinoma. Urology 75:1365–1370CrossRefPubMedGoogle Scholar
  64. 64.
    Kattan MW, Reuter V, Motzer RJ et al (2001) A postoperative prognostic nomogram for renal cell carcinoma. J Urol 166:63–67CrossRefPubMedGoogle Scholar
  65. 65.
    Sorbellini M, Kattan MW, Snyder ME et al (2005) A postoperative prognostic nomogram predicting recurrence for patients with conventional clear cell renal cell carcinoma. J Urol 173:48–51CrossRefPubMedGoogle Scholar
  66. 66.
    Motzer RJ, Mazumdar M, Bacik J et al (1999) Survival and prognostic stratification of 670 patients with advanced renal cell carcinoma. J Clin Oncol 17:2530–2540CrossRefPubMedGoogle Scholar
  67. 67.
    Heng DYC, Xie W, Regan MM et al (2013) External validation and comparison with other models of the International Metastatic Renal-Cell Carcinoma Database Consortium prognostic model: a population-based study. Lancet Oncol 14:141–148CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Patil S, Figlin RA, Hutson TE et al (2011) Prognostic factors for progression-free and overall survival with sunitinib targeted therapy and with cytokine as first-line therapy in patients with metastatic renal cell carcinoma. Ann Oncol 22:295–300CrossRefPubMedGoogle Scholar
  69. 69.
    Heng DYC, Wells JC, Rini BI et al (2014) Cytoreductive nephrectomy in patients with synchronous metastases from renal cell carcinoma: results from the International Metastatic Renal Cell Carcinoma Database Consortium. Eur Urol 66:704–710CrossRefPubMedGoogle Scholar
  70. 70.
    Culp SH, Tannir NM, Abel EJ et al (2010) Can we better select patients with metastatic renal cell carcinoma for cytoreductive nephrectomy? Cancer 116:3378–3388CrossRefPubMedGoogle Scholar
  71. 71.
    Ko JJ, Xie W, Kroeger N et al (2015) The International Metastatic Renal Cell Carcinoma Database Consortium model as a prognostic tool in patients with metastatic renal cell carcinoma previously treated with first-line targeted therapy: a population-based study. Lancet Oncol 16:293–300. CrossRefPubMedGoogle Scholar
  72. 72.
    McShane LM, Altman DG, Sauerbrei W et al (2005) REporting recommendations for tumour MARKer prognostic studies (REMARK). Br J Cancer 93:387–391CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Mallett S, Timmer A, Sauerbrei W, Altman DG (2010) Reporting of prognostic studies of tumour markers: a review of published articles in relation to REMARK guidelines. Br J Cancer 102:173–180CrossRefPubMedGoogle Scholar
  74. 74.
    Brannon AR, Reddy A, Seiler M et al (2010) Molecular stratification of clear cell renal cell carcinoma by consensus clustering reveals distinct subtypes and survival patterns. Genes Cancer 1:152–163CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Brooks SA, Brannon AR, Parker JS et al (2014) ClearCode34: a prognostic risk predictor for localized clear cell renal cell carcinoma. Eur Urol 66:77–84CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Wei X, Choudhury Y, Lim WK et al (2016) Recognizing the continuous nature of expression heterogeneity and clinical outcomes in clear cell renal cell carcinoma. Sci Rep 7(1):7342. CrossRefGoogle Scholar
  77. 77.
    Rini B, Goddard A, Knezevic D et al (2015) A 16-gene assay to predict recurrence after surgery in localised renal cell carcinoma: development and validation studies. Lancet Oncol 16:676–685CrossRefPubMedGoogle Scholar
  78. 78.
    Klatte T, Seligson DB, LaRochelle J et al (2009) Molecular signatures of localized clear cell renal cell carcinoma to predict disease-free survival after nephrectomy. Cancer Epidemiol Biomark Prev 18:894–900CrossRefGoogle Scholar
  79. 79.
    de Velasco G, Culhane AC, Fay AP et al (2017) Molecular subtypes improve prognostic value of International Metastatic Renal Cell Carcinoma Database Consortium prognostic model. Oncologist 22:286–292CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Battle C, Abbott Z, Hutchings HA et al (2017) Protocol for a multicentre randomised feasibility STUdy evaluating the impact of a prognostic model for management of BLunt chest wall trauma patients: STUMBL trial. BMJ Open 7:e015972. CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Galsky MD (2013) A prognostic model for metastatic renal-cell carcinoma. Lancet Oncol 14:102–103CrossRefPubMedGoogle Scholar
  82. 82.
    Simon RM, Paik S, Hayes DF (2009) Use of archived specimens in evaluation of prognostic and predictive biomarkers. J Natl Cancer Inst 101:1446–1452CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Beisland C, Guðbrandsdottir G, Reisæter LAR et al (2016) A prospective risk-stratified follow-up programme for radically treated renal cell carcinoma patients: evaluation after 8 years of clinical use. World J Urol 34:1087–1099CrossRefPubMedGoogle Scholar
  84. 84.
    Négrier S, Escudier B, Gomez F et al (2002) Prognostic factors of survival and rapid progression in 782 patients with metastatic renal carcinomas treated by cytokines: a report from the Groupe Français d’Immunothérapie. Ann Oncol 13:1460–1468CrossRefPubMedGoogle Scholar
  85. 85.
    Choueiri TK, Rini B, Garcia JA et al (2007) Prognostic factors associated with long-term survival in previously untreated metastatic renal cell carcinoma. Ann Oncol 18:249–255CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of UrologyAddenbrooke’s HospitalCambridgeUK
  2. 2.Department of UrologyRoyal Bournemouth and Christchurch HospitalsBournemouthUK
  3. 3.Academic Urology Group, Department of SurgeryUniversity of CambridgeCambridgeUK

Personalised recommendations