World Journal of Urology

, Volume 36, Issue 5, pp 811–817 | Cite as

Micro-ureteroscopy vs. ureteroscopy: effects of miniaturization on renal vascularization and intrapelvic pressure

  • Juan-Pablo Caballero-Romeu
  • Jua-Antonio Galán-Llopis
  • Federico Soria
  • Esther Morcillo-Martín
  • Pablo Caballero-Pérez
  • Alejandro Garcia
  • Julia E. De La Cruz-Conty
  • Jesús Romero-Maroto
Original Article
  • 79 Downloads

Abstract

Purpose

Ureteroscopy (URS) is related to complications, as fever or postoperative urinary sepsis, due to high intrapelvic pressure (IPP) during the procedure. Micro-ureteroscopy (m-URS) aims to reduce morbidity by miniaturizing the instrument. The objective of this study is to compare IPP and changes in renal haemodynamics, while performing m-URS vs. conventional URS.

Methods

A porcine model involving 14 female pigs was used in this experimental study. Two surgeons performed 7 URS (8/9.8 Fr), for 45 min, and 7 m-URS (4.85 Fr), for 60 min, representing a total of 28 procedures in 14 animals. A catheter pressure transducer measured IPP every 5 min. Haemodynamic parameters were evaluated by Doppler ultrasound. The volume of irrigation fluid employed in each procedure was also measured.

Results

The range of average pressures was 5.08–14.1 mmHg in the m-URS group and 6.08–20.64 mmHg in the URS (NS). 30 mmHg of IPP were not reached in 90% of renal units examined with m-URS, as compared to 65% of renal units in the URS group. Mean peak diastolic velocity decreased from 15.93 to 15.22 cm/s (NS) in the URS group and from 19.26 to 12.87 cm/s in the m-URS group (p < 0.01). Mean resistive index increased in both groups (p < 0.01). Irrigation fluid volume used was 485 mL in the m-URS group and 1475 mL in the URS group (p < 0.001).

Conclusions

m-URS requires less saline irrigation volumes than the conventional ureteroscopy and increases renal IPP to a lesser extent.

Keywords

Ureteroscopy Urolithiasis Ureteral stones Miniaturization Model, animal Minimally invasive surgical procedures 

Abbreviations

IPP

Intrapelvic pressure

URS

Ureteroscopy

SIRS

Systemic inflammatory response syndrome

RIRS

Retrograde intrarenal surgery

Fr

French

m-URS

Micro-ureteroscopy

kg

Kilograms

cm

Centimeters

mm

Millimeters

mmHg

Millimeter of mercury

KW

Kruskal–Wallis

BMI

Body mass index

min

Minutes

PSV

Peak systolic velocity

PDV

Peak diastolic velocity

RI

Resistance Index

MAF

Mean arterial flow

NS

No significative

CI

Confidence interval

Std

Student’s test

Wil.

Wilcoxon signed-rank test

EAU

European Association of Urology

Notes

Author contributions

JPC-R: project development, data collection, and manuscript writing. JAG-L: project development, data collection, and manuscript writing. FS: project development, data collection, and manuscript writing. EM-M: data collection. PC-P: data analysis. JEC-C: data collection. AG-S: manuscript writing. JR-M: manuscript writing.

Compliance with ethical standards

Conflict of interest

Authors received research funds from a public research institute (ISABIAL-FISABIO) and from Presurgy SL.

Ethical approval

The experimental protocol received approval from the Ethics Committee on Animal Experimentation of the Jesús Usón Minimally Invasive Surgery Center (Cáceres), Spain.

References

  1. 1.
    Türk C, Petřík A, Sarica K et al (2016) EAU guidelines on interventional treatment for urolithiasis. Eur Urol 69:475–482CrossRefPubMedGoogle Scholar
  2. 2.
    Boccafoschi C, Lugnani F (1985) Intra-renal reflux. Urol Res 13:253–258CrossRefPubMedGoogle Scholar
  3. 3.
    Zhong W, Leto G, Wang L, Zeng G (2015) Systemic inflammatory response syndrome after flexible ureteroscopic lithotripsy: a study of risk factors. J Endourol 29:25–28CrossRefPubMedGoogle Scholar
  4. 4.
    Platt JF (1992) Duplex Doppler evaluation of native kidney dysfunction: obstructive and nonobstructive disease. AJR Am J Roentgenol 158:1035–1042CrossRefPubMedGoogle Scholar
  5. 5.
    Soria Gálvez F, Delgado Márquez MI, Rioja Sanz LA et al (2007) Usefulness of renal resistive index in the diagnosis and evolution of the obstructive uropathy. Experimental study. Actas Urol Esp 31:38–42CrossRefPubMedGoogle Scholar
  6. 6.
    Caballero JP, Galán JA, Verges A, Amorós A, Garcia-Segui A (2015) Micro-ureteroscopy: initial experience in the endoscopic treatment of pelvic ureteral lithiasis. Actas Urol Esp 39:327–331CrossRefPubMedGoogle Scholar
  7. 7.
    Caballero-Romeu JP, Galán-Llopis JA, Pérez-Fentes D et al (2016) Assessment of the effectiveness, safety, and reproducibility of micro-ureteroscopy in the treatment of distal ureteral stones in women: a multicenter prospective study. J Endourol 30:1185–1193CrossRefPubMedGoogle Scholar
  8. 8.
    Caballero-Romeu JP, Budia-Alba A, Galan-Llopis JA et al (2016) Microureteroscopy in children: two first cases. J Endourol Case Rep 2:44–47CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Utanğaç MM, Sancaktutar AA, Tepeler A (2017) Micro-ureteroscopy for the treatment of distal ureteral calculi in children. J Pediatr Surg 52:512–516CrossRefPubMedGoogle Scholar
  10. 10.
    Caballero-Romeu JP, Galán-Llopis JA (2017) MicroURS. Is it a technique to stay? Arch Esp Urol 70:134–140PubMedGoogle Scholar
  11. 11.
    Garber JC, Barbee WB, Bielitzki JT et al (2011) Guide for the care and use of laboratory animals, 8th edn. National Institutes of health. U.S. Department of health and Human Services. Web, 08 July 2017Google Scholar
  12. 12.
    Caballero-Romeu J, Galán-Llopis J, Pérez-Seoane H et al (2016) MP22-06 pelvic ureteral stones in women: microureteroscopy reduces the need for ureteral stenting compared to conventional ureteroscopy. J Urol 195:e255CrossRefGoogle Scholar
  13. 13.
    Torchiano, M. Pakage “effsize” March 2017 (online). https://cran.r-project.org/web/packages/effsize/effsize.pdf. Accessed 10 Feb 2017
  14. 14.
    Osther PJ, Pedersen KV, Lildal SK et al (2016) Pathophysiological aspects of ureterorenoscopic management of upper urinary tract calculi. Curr Opin Urol 26:63–69CrossRefPubMedGoogle Scholar
  15. 15.
    Schwalb DM, Eshghi M, Davidian M, Franco I (1993) Morphological and physiological changes in the urinary tract associated with ureteral dilation and ureteropyeloscopy: an experimental study. J Urol 149:1576–1585CrossRefPubMedGoogle Scholar
  16. 16.
    Stenberg A, Bohman SO, Morsing P et al (1988) Back-leak of pelvic urine to the bloodstream. Acta Physiol Scand 134:223–234CrossRefPubMedGoogle Scholar
  17. 17.
    Troxel SA, Low RK (2002) Renal intrapelvic pressure during percutaneous nephrolithotomy and its correlation with the development of postoperative fever. J Urol 168:1348–1351CrossRefPubMedGoogle Scholar
  18. 18.
    Gonen M, Turan H, Ozturk B, Ozkardes H (2008) Factors affecting fever following percutaneous nephrolithotomy: a perspective clinical study. J Endourol 22:2135–2138CrossRefPubMedGoogle Scholar
  19. 19.
    de la Rosette J, Denstedt J, Geavlete P et al (2014) The clinical research office of the endourological society ureteroscopy global study: indications, complications, and outcomes in 11,885 patients. J Endourol 28:131–139CrossRefPubMedGoogle Scholar
  20. 20.
    Schwalb DM, Eshghi M, Davidian M, Franco I (1993) Morphological and physiological changes in the urinary tract associated with ureteral dilation and ureteropyeloscopy: an experimental study. J Urol 149:1576–1585CrossRefPubMedGoogle Scholar
  21. 21.
    Jung H, Osther PJ (2015) Intraluminal pressure profiles during flexible ureterorenoscopy. Springerplus 24:373CrossRefGoogle Scholar
  22. 22.
    Platt JF, Rubin JM, Ellis JH (1989) Distinction between obstructive and non-obstructive pyelocaliectasis with duplex Doppler sonography. Am J Roentgenol 153:997–1000CrossRefGoogle Scholar
  23. 23.
    Rawashdeh YF, Hørlyck A, Mortensen J et al (2003) Resistive index: an experimental study of acute complete unilateral ureteral obstruction. Investig Radiol 38:153–158Google Scholar
  24. 24.
    Ulrich JC, York JP, Koff SA (1995) The renal vascular response to acutely elevated intrapelvic pressure: resistive index measurements in experimental urinary obstruction. J Urol 154:1202–1204CrossRefPubMedGoogle Scholar
  25. 25.
    Claudon M, Barnewolt CE, Taylor GA et al (1999) Renal blood flow in pigs: changes depicted with contrast-enhanced harmonic US imaging during acute urinary obstruction. Radiology 212:725–731CrossRefPubMedGoogle Scholar
  26. 26.
    Hahn RG (2006) Fluid absorption in endoscopic surgery. Br J Anaesth 96:8–20CrossRefPubMedGoogle Scholar
  27. 27.
    Zhong W, Zeng G, Wu K et al (2008) Does a smaller tract in percutaneous nephrolithotomy contribute to high renal pelvic pressure and postoperative fever? J Endourol 22:2147–2151CrossRefPubMedGoogle Scholar
  28. 28.
    Cybulski P, Honey RJ, Pace K (2004) Fluid absorption during ureterorenoscopy. J Endourol 18:739–742CrossRefPubMedGoogle Scholar
  29. 29.
    Guzelburc V, Balasar M, Colakogullari M et al (2016) Comparison of absorbed irrigation fluid volumes during retrograde intrarenal surgery and percutaneous nephrolithotomy for the treatment of kidney stones larger than 2 cm. Springerplus 5:1707CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Juan-Pablo Caballero-Romeu
    • 1
  • Jua-Antonio Galán-Llopis
    • 1
  • Federico Soria
    • 2
  • Esther Morcillo-Martín
    • 2
  • Pablo Caballero-Pérez
    • 3
  • Alejandro Garcia
    • 4
  • Julia E. De La Cruz-Conty
    • 2
  • Jesús Romero-Maroto
    • 5
    • 6
  1. 1.Urology Department, University Hospital of VinalopóAlicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation)AlicanteSpain
  2. 2.Endoscopy UnitJesús Usón Minimally Invasive Surgery CenterCáceresSpain
  3. 3.Community Nursing, Preventive Medicine and Public Health and History of Science DepartmentUniversity of AlicanteAlicanteSpain
  4. 4.Urology DepartmentElche University General HospitalAlicanteSpain
  5. 5.Urology DepartmentSan Juan University Clinic HospitalAlicanteSpain
  6. 6.Miguel Hernández UniversityAlicanteSpain

Personalised recommendations