Skip to main content
Log in

Micro-ureteroscopy vs. ureteroscopy: effects of miniaturization on renal vascularization and intrapelvic pressure

  • Original Article
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

Ureteroscopy (URS) is related to complications, as fever or postoperative urinary sepsis, due to high intrapelvic pressure (IPP) during the procedure. Micro-ureteroscopy (m-URS) aims to reduce morbidity by miniaturizing the instrument. The objective of this study is to compare IPP and changes in renal haemodynamics, while performing m-URS vs. conventional URS.

Methods

A porcine model involving 14 female pigs was used in this experimental study. Two surgeons performed 7 URS (8/9.8 Fr), for 45 min, and 7 m-URS (4.85 Fr), for 60 min, representing a total of 28 procedures in 14 animals. A catheter pressure transducer measured IPP every 5 min. Haemodynamic parameters were evaluated by Doppler ultrasound. The volume of irrigation fluid employed in each procedure was also measured.

Results

The range of average pressures was 5.08–14.1 mmHg in the m-URS group and 6.08–20.64 mmHg in the URS (NS). 30 mmHg of IPP were not reached in 90% of renal units examined with m-URS, as compared to 65% of renal units in the URS group. Mean peak diastolic velocity decreased from 15.93 to 15.22 cm/s (NS) in the URS group and from 19.26 to 12.87 cm/s in the m-URS group (p < 0.01). Mean resistive index increased in both groups (p < 0.01). Irrigation fluid volume used was 485 mL in the m-URS group and 1475 mL in the URS group (p < 0.001).

Conclusions

m-URS requires less saline irrigation volumes than the conventional ureteroscopy and increases renal IPP to a lesser extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

IPP:

Intrapelvic pressure

URS:

Ureteroscopy

SIRS:

Systemic inflammatory response syndrome

RIRS:

Retrograde intrarenal surgery

Fr:

French

m-URS:

Micro-ureteroscopy

kg:

Kilograms

cm:

Centimeters

mm:

Millimeters

mmHg:

Millimeter of mercury

KW:

Kruskal–Wallis

BMI:

Body mass index

min:

Minutes

PSV:

Peak systolic velocity

PDV:

Peak diastolic velocity

RI:

Resistance Index

MAF:

Mean arterial flow

NS:

No significative

CI:

Confidence interval

Std:

Student’s test

Wil.:

Wilcoxon signed-rank test

EAU:

European Association of Urology

References

  1. Türk C, Petřík A, Sarica K et al (2016) EAU guidelines on interventional treatment for urolithiasis. Eur Urol 69:475–482

    Article  PubMed  Google Scholar 

  2. Boccafoschi C, Lugnani F (1985) Intra-renal reflux. Urol Res 13:253–258

    Article  CAS  PubMed  Google Scholar 

  3. Zhong W, Leto G, Wang L, Zeng G (2015) Systemic inflammatory response syndrome after flexible ureteroscopic lithotripsy: a study of risk factors. J Endourol 29:25–28

    Article  PubMed  Google Scholar 

  4. Platt JF (1992) Duplex Doppler evaluation of native kidney dysfunction: obstructive and nonobstructive disease. AJR Am J Roentgenol 158:1035–1042

    Article  CAS  PubMed  Google Scholar 

  5. Soria Gálvez F, Delgado Márquez MI, Rioja Sanz LA et al (2007) Usefulness of renal resistive index in the diagnosis and evolution of the obstructive uropathy. Experimental study. Actas Urol Esp 31:38–42

    Article  PubMed  Google Scholar 

  6. Caballero JP, Galán JA, Verges A, Amorós A, Garcia-Segui A (2015) Micro-ureteroscopy: initial experience in the endoscopic treatment of pelvic ureteral lithiasis. Actas Urol Esp 39:327–331

    Article  CAS  PubMed  Google Scholar 

  7. Caballero-Romeu JP, Galán-Llopis JA, Pérez-Fentes D et al (2016) Assessment of the effectiveness, safety, and reproducibility of micro-ureteroscopy in the treatment of distal ureteral stones in women: a multicenter prospective study. J Endourol 30:1185–1193

    Article  PubMed  Google Scholar 

  8. Caballero-Romeu JP, Budia-Alba A, Galan-Llopis JA et al (2016) Microureteroscopy in children: two first cases. J Endourol Case Rep 2:44–47

    Article  PubMed  PubMed Central  Google Scholar 

  9. Utanğaç MM, Sancaktutar AA, Tepeler A (2017) Micro-ureteroscopy for the treatment of distal ureteral calculi in children. J Pediatr Surg 52:512–516

    Article  PubMed  Google Scholar 

  10. Caballero-Romeu JP, Galán-Llopis JA (2017) MicroURS. Is it a technique to stay? Arch Esp Urol 70:134–140

    PubMed  Google Scholar 

  11. Garber JC, Barbee WB, Bielitzki JT et al (2011) Guide for the care and use of laboratory animals, 8th edn. National Institutes of health. U.S. Department of health and Human Services. Web, 08 July 2017

  12. Caballero-Romeu J, Galán-Llopis J, Pérez-Seoane H et al (2016) MP22-06 pelvic ureteral stones in women: microureteroscopy reduces the need for ureteral stenting compared to conventional ureteroscopy. J Urol 195:e255

    Article  Google Scholar 

  13. Torchiano, M. Pakage “effsize” March 2017 (online). https://cran.r-project.org/web/packages/effsize/effsize.pdf. Accessed 10 Feb 2017

  14. Osther PJ, Pedersen KV, Lildal SK et al (2016) Pathophysiological aspects of ureterorenoscopic management of upper urinary tract calculi. Curr Opin Urol 26:63–69

    Article  PubMed  Google Scholar 

  15. Schwalb DM, Eshghi M, Davidian M, Franco I (1993) Morphological and physiological changes in the urinary tract associated with ureteral dilation and ureteropyeloscopy: an experimental study. J Urol 149:1576–1585

    Article  CAS  PubMed  Google Scholar 

  16. Stenberg A, Bohman SO, Morsing P et al (1988) Back-leak of pelvic urine to the bloodstream. Acta Physiol Scand 134:223–234

    Article  CAS  PubMed  Google Scholar 

  17. Troxel SA, Low RK (2002) Renal intrapelvic pressure during percutaneous nephrolithotomy and its correlation with the development of postoperative fever. J Urol 168:1348–1351

    Article  PubMed  Google Scholar 

  18. Gonen M, Turan H, Ozturk B, Ozkardes H (2008) Factors affecting fever following percutaneous nephrolithotomy: a perspective clinical study. J Endourol 22:2135–2138

    Article  PubMed  Google Scholar 

  19. de la Rosette J, Denstedt J, Geavlete P et al (2014) The clinical research office of the endourological society ureteroscopy global study: indications, complications, and outcomes in 11,885 patients. J Endourol 28:131–139

    Article  PubMed  Google Scholar 

  20. Schwalb DM, Eshghi M, Davidian M, Franco I (1993) Morphological and physiological changes in the urinary tract associated with ureteral dilation and ureteropyeloscopy: an experimental study. J Urol 149:1576–1585

    Article  CAS  PubMed  Google Scholar 

  21. Jung H, Osther PJ (2015) Intraluminal pressure profiles during flexible ureterorenoscopy. Springerplus 24:373

    Article  Google Scholar 

  22. Platt JF, Rubin JM, Ellis JH (1989) Distinction between obstructive and non-obstructive pyelocaliectasis with duplex Doppler sonography. Am J Roentgenol 153:997–1000

    Article  CAS  Google Scholar 

  23. Rawashdeh YF, Hørlyck A, Mortensen J et al (2003) Resistive index: an experimental study of acute complete unilateral ureteral obstruction. Investig Radiol 38:153–158

    Google Scholar 

  24. Ulrich JC, York JP, Koff SA (1995) The renal vascular response to acutely elevated intrapelvic pressure: resistive index measurements in experimental urinary obstruction. J Urol 154:1202–1204

    Article  CAS  PubMed  Google Scholar 

  25. Claudon M, Barnewolt CE, Taylor GA et al (1999) Renal blood flow in pigs: changes depicted with contrast-enhanced harmonic US imaging during acute urinary obstruction. Radiology 212:725–731

    Article  CAS  PubMed  Google Scholar 

  26. Hahn RG (2006) Fluid absorption in endoscopic surgery. Br J Anaesth 96:8–20

    Article  CAS  PubMed  Google Scholar 

  27. Zhong W, Zeng G, Wu K et al (2008) Does a smaller tract in percutaneous nephrolithotomy contribute to high renal pelvic pressure and postoperative fever? J Endourol 22:2147–2151

    Article  PubMed  Google Scholar 

  28. Cybulski P, Honey RJ, Pace K (2004) Fluid absorption during ureterorenoscopy. J Endourol 18:739–742

    Article  PubMed  Google Scholar 

  29. Guzelburc V, Balasar M, Colakogullari M et al (2016) Comparison of absorbed irrigation fluid volumes during retrograde intrarenal surgery and percutaneous nephrolithotomy for the treatment of kidney stones larger than 2 cm. Springerplus 5:1707

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JPC-R: project development, data collection, and manuscript writing. JAG-L: project development, data collection, and manuscript writing. FS: project development, data collection, and manuscript writing. EM-M: data collection. PC-P: data analysis. JEC-C: data collection. AG-S: manuscript writing. JR-M: manuscript writing.

Corresponding author

Correspondence to Juan-Pablo Caballero-Romeu.

Ethics declarations

Conflict of interest

Authors received research funds from a public research institute (ISABIAL-FISABIO) and from Presurgy SL.

Ethical approval

The experimental protocol received approval from the Ethics Committee on Animal Experimentation of the Jesús Usón Minimally Invasive Surgery Center (Cáceres), Spain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caballero-Romeu, JP., Galán-Llopis, JA., Soria, F. et al. Micro-ureteroscopy vs. ureteroscopy: effects of miniaturization on renal vascularization and intrapelvic pressure. World J Urol 36, 811–817 (2018). https://doi.org/10.1007/s00345-018-2205-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-018-2205-y

Keywords

Navigation