Advertisement

World Journal of Urology

, Volume 35, Issue 8, pp 1191–1197 | Cite as

Improved decision making in intermediate-risk prostate cancer: a multicenter study on pathologic and oncologic outcomes after radical prostatectomy

  • Jean Baptiste Beauval
  • Guillaume Ploussard
  • Bastien Cabarrou
  • Mathieu Roumiguié
  • Adil Ouzzane
  • Jérome Gas
  • Annabelle Goujon
  • Gautier Marcq
  • Romain Mathieu
  • Sébastien Vincendeau
  • Xavier Cathelineau
  • Pierre Mongiat-Artus
  • Laurent Salomon
  • Michel Soulié
  • Arnaud Méjean
  • Alexandre de La Taille
  • Morgan Rouprêt
  • François Rozet
  • Committee of Cancerology of the Association of French Urology
Original Article

Abstract

Background

Prognoses for intermediate-risk prostate cancer (PCa) remain heterogeneous. Improved substratification could optimize treatment and monitoring strategies. The objective was to validate this subclassification in a radical prostatectomy (RP) series.

Methods

Between 2000 and 2011, 4038 patients who underwent RP for intermediate-risk PCa in seven French academic centers were included. Unfavorable intermediate-risk (UIR) PCa was defined as having a primary Gleason score of 4, ≥50% positive biopsy cores (PPBC), or more than one D’Amico intermediate-risk factor (i.e., cT2b, PSA 10–20, or Gleason score 7). Remaining PCa cases were classified as favorable. Main endpoints were pathologic results (pT stage, final Gleason score, surgical margin status), and oncologic outcomes were assessed according to PSA recurrence-free survival (PSA-RFS). Univariate and multivariate analyses were performed using the log-rank test and the Cox proportional hazards model.

Results

Median follow-up was 48 months (95% CI = [45–49]). Patients with UIR had worse PSA-RFS (68.17 vs. 81.98% at 4 years, HR = 1.97, 95% CI = [1.71; 2.27], p < 0.0001) compared to those with a favorable disease. The need for adjuvant therapy was significantly greater for UIR patients (43.5 vs. 29.2%, p < 0.0001). In multivariate analysis, primary Gleason score of 4 (HR = 1.81, 95% CI = [1.55; 2.12], p < 0.0001) and PPBC ≥ 50% (HR = 1.26, 95% CI = [1.02; 1.56], p = 0.0286) were significant preoperative predictors for worse PSA-RFS.

Conclusions

This study highlights the heterogeneity of NCCN intermediate-risk patients and validates (in a large RP cohort) the previously proposed subclassification for this group. This classification can significantly predict both pathologic and oncologic outcomes. This easy-to-use stratification could help physicians’ decision making. Prospective study and new tools as genomic tests and novel molecular-based approaches can improve this stratification in the future for patient counseling.

Keywords

Prostate cancer Intermediate risk Radical prostatectomy Biochemical recurrence-free survival Risk factors Stratification 

Notes

Authors’ contribution

Beauval and Ploussard have contributed to protocol/project development, data collection or management, data analysis, and manuscript writing/editing. Cabarrou has contributed to data analysis. Roumiguié and Ouzzane have contributed to data collection or management, protocol/project development. Gas, Goujon, Marcq, and Mathieu have contributed to data collection or management. Vincendeau, Cathelineau, and Salomon have contributed to manuscript writing/editing, data collection or management. Soulié, de La Taille, and Rouprêt have contributed to manuscript writing/editing. Rozet has contributed to manuscript writing/editing, protocol/project development.

Compliance with ethical standards

This study was performed in accordance with ethical standards.

Conflict of interest

The authors declare no conflicts of interest.

References

  1. 1.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T et al (2008) Cancer statistics, 2008. CA Cancer J Clin 58(2):71–96CrossRefPubMedGoogle Scholar
  2. 2.
    Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30CrossRefPubMedGoogle Scholar
  3. 3.
    Grosclaude P, Belot A, Daubisse Marliac L, Remontet L, Leone N, Bossard N et al (2015) Prostate cancer incidence and mortality trends in France from 1980 to 2011. Progres en urologie : journal de l’Association francaise d’urologie et de la Societe francaise d’urologie. 25(9):536–542CrossRefGoogle Scholar
  4. 4.
    Budaus L, Spethmann J, Isbarn H, Schmitges J, Beesch L, Haese A et al (2011) Inverse stage migration in patients undergoing radical prostatectomy: results of 8916 European patients treated within the last decade. BJU Int 108(8):1256–1261CrossRefPubMedGoogle Scholar
  5. 5.
    Beauval JB, Roumiguie M, Doumerc N, Thoulouzan M, Huyghe E, Allory Y et al (2012) Migration of pathological stage after radical prostatectomy to higher risk tumors of relapse: comparative two-center study between 2005 and 2010. Progres en urologie : journal de l’Association francaise d’urologie et de la Societe francaise d’urologie. 22(16):1015–1020CrossRefGoogle Scholar
  6. 6.
    Jacobs BL, Zhang Y, Schroeck FR, Skolarus TA, Wei JT, Montie JE et al (2013) Use of advanced treatment technologies among men at low risk of dying from prostate cancer. JAMA J Am Med Assoc 309(24):2587–2595CrossRefGoogle Scholar
  7. 7.
    Cooperberg MR, Broering JM, Carroll PR (2010) Time trends and local variation in primary treatment of localized prostate cancer. J Clin Oncol Off J Am Soc Clin Oncol 28(7):1117–1123CrossRefGoogle Scholar
  8. 8.
    Jung JW, Lee JK, Hong SK, Byun SS, Lee SE (2015) Stratification of patients with intermediate-risk prostate cancer. BJU Int 115(6):907–912CrossRefPubMedGoogle Scholar
  9. 9.
    Abern MR, Aronson WJ, Terris MK, Kane CJ, Presti JC Jr, Amling CL et al (2013) Delayed radical prostatectomy for intermediate-risk prostate cancer is associated with biochemical recurrence: possible implications for active surveillance from the SEARCH database. Prostate 73(4):409–417CrossRefPubMedGoogle Scholar
  10. 10.
    Ploussard G, Isbarn H, Briganti A, Sooriakumaran P, Surcel CI, Salomon L et al (2015) Can we expand active surveillance criteria to include biopsy Gleason 3 + 4 prostate cancer? A multi-institutional study of 2,323 patients. Urol Oncol 33(2):71e1–71e9CrossRefGoogle Scholar
  11. 11.
    Godtman RA, Holmberg E, Khatami A, Stranne J, Hugosson J (2013) Outcome following active surveillance of men with screen-detected prostate cancer. Results from the Goteborg randomised population-based prostate cancer screening trial. Eur Urol 63(1):101–107CrossRefPubMedGoogle Scholar
  12. 12.
    Nguyen PL, Chen MH, Catalona WJ, Moul JW, Sun L, D’Amico AV (2009) Predicting prostate cancer mortality among men with intermediate to high-risk disease and multiple unfavorable risk factors. Int J Radiat Oncol Biol Phys 73(3):659–664CrossRefPubMedGoogle Scholar
  13. 13.
    Stark JR, Perner S, Stampfer MJ, Sinnott JA, Finn S, Eisenstein AS et al (2009) Gleason score and lethal prostate cancer: does 3 + 4 = 4 + 3? J Clin Oncol Off J Am Soc Clin Oncol 27(21):3459–3464CrossRefGoogle Scholar
  14. 14.
    D’Amico AV, Renshaw AA, Cote K, Hurwitz M, Beard C, Loffredo M et al (2004) Impact of the percentage of positive prostate cores on prostate cancer-specific mortality for patients with low or favorable intermediate-risk disease. J Clin Oncol Off J Am Soc Clin Oncol 22(18):3726–3732CrossRefGoogle Scholar
  15. 15.
    Zumsteg ZS, Spratt DE, Pei I, Zhang Z, Yamada Y, Kollmeier M et al (2013) A new risk classification system for therapeutic decision making with intermediate-risk prostate cancer patients undergoing dose-escalated external-beam radiation therapy. Eur Urol 64(6):895–902CrossRefPubMedGoogle Scholar
  16. 16.
    Heidenreich A, Bellmunt J, Bolla M, Joniau S, Mason M, Matveev V et al (2011) EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and treatment of clinically localised disease. Eur Urol 59(1):61–71CrossRefPubMedGoogle Scholar
  17. 17.
    Briganti A, Larcher A, Abdollah F, Capitanio U, Gallina A, Suardi N et al (2012) Updated nomogram predicting lymph node invasion in patients with prostate cancer undergoing extended pelvic lymph node dissection: the essential importance of percentage of positive cores. Eur Urol 61(3):480–487CrossRefPubMedGoogle Scholar
  18. 18.
    D’Amico AV, Chen MH, Renshaw AA, Loffredo M, Kantoff PW (2008) Androgen suppression and radiation vs radiation alone for prostate cancer: a randomized trial. JAMA J Am Med Assoc 299(3):289–295Google Scholar
  19. 19.
    Jones CU, Hunt D, McGowan DG, Amin MB, Chetner MP, Bruner DW et al (2011) Radiotherapy and short-term androgen deprivation for localized prostate cancer. N Engl J Med 365(2):107–118CrossRefPubMedGoogle Scholar
  20. 20.
    Klotz L, Vesprini D, Sethukavalan P, Jethava V, Zhang L, Jain S et al (2015) Long-term follow-up of a large active surveillance cohort of patients with prostate cancer. J Clin Oncol Off J Am Soc Clin Oncol 33(3):272–277CrossRefGoogle Scholar
  21. 21.
    Cooperberg MR, Cowan JE, Hilton JF, Reese AC, Zaid HB, Porten SP et al (2011) Outcomes of active surveillance for men with intermediate-risk prostate cancer. J Clin Oncol Off J Am Soc Clin Oncol 29(2):228–234CrossRefGoogle Scholar
  22. 22.
    Loeb S, Folkvaljon Y, Makarov DV, Bratt O, Bill-Axelson A, Stattin P (2015) Five-year nationwide follow-up study of active surveillance for prostate cancer. Eur Urol 67(2):233–238CrossRefPubMedGoogle Scholar
  23. 23.
    Raldow AC, Zhang D, Chen MH, Braccioforte MH, Moran BJ, D’Amico AV (2015) Risk group and death from prostate cancer: implications for active surveillance in men with favorable intermediate-risk prostate cancer. JAMA Oncol 1(3):334–340CrossRefPubMedGoogle Scholar
  24. 24.
    Zelefsky MJ, Pei X, Chou JF, Schechter M, Kollmeier M, Cox B et al (2011) Dose escalation for prostate cancer radiotherapy: predictors of long-term biochemical tumor control and distant metastases-free survival outcomes. Eur Urol 60(6):1133–1139CrossRefPubMedGoogle Scholar
  25. 25.
    Amling CL, Blute ML, Bergstralh EJ, Seay TM, Slezak J, Zincke H (2000) Long-term hazard of progression after radical prostatectomy for clinically localized prostate cancer: continued risk of biochemical failure after 5 years. J Urol 164(1):101–105CrossRefPubMedGoogle Scholar
  26. 26.
    Freedland SJ, Humphreys EB, Mangold LA, Eisenberger M, Partin AW (2006) Time to prostate specific antigen recurrence after radical prostatectomy and risk of prostate cancer specific mortality. J Urol 176(4 Pt 1):1404–1408CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jean Baptiste Beauval
    • 1
    • 3
  • Guillaume Ploussard
    • 2
    • 3
  • Bastien Cabarrou
    • 3
  • Mathieu Roumiguié
    • 1
    • 3
  • Adil Ouzzane
    • 4
  • Jérome Gas
    • 1
  • Annabelle Goujon
    • 6
  • Gautier Marcq
    • 4
  • Romain Mathieu
    • 5
  • Sébastien Vincendeau
    • 5
  • Xavier Cathelineau
    • 6
  • Pierre Mongiat-Artus
    • 7
  • Laurent Salomon
    • 8
  • Michel Soulié
    • 1
    • 3
  • Arnaud Méjean
    • 9
  • Alexandre de La Taille
    • 8
  • Morgan Rouprêt
    • 10
  • François Rozet
    • 6
  • Committee of Cancerology of the Association of French Urology
  1. 1.Department of Urology, Andrology and Renal Transplantation, CHU RangueilPaul-Sabatier UniversityToulouse CedexFrance
  2. 2.Department of UrologyClinique St Jean du LanguedocToulouseFrance
  3. 3.Institut Claudius Regaud, IUCT-OToulouseFrance
  4. 4.Department of Urology, Andrology and Renal TransplantationCHU LilleLilleFrance
  5. 5.Department of Urology, Andrology and Renal TransplantationCHU RennesRennesFrance
  6. 6.Department of Urology, Institut Mutualiste MonsourisParis-Descartes UniversityParisFrance
  7. 7.Department of Urology, Andrology and Renal Transplantation Hôpital Saint-LouisParis-7 Denis Diderot UniversityParisFrance
  8. 8.Department of Urology, Andrology and Renal TransplantationCHU MondorCréteilFrance
  9. 9.Department of Urology and Renal transplantationHEGPParisFrance
  10. 10.Department of Urology, Andrology and Renal TransplantationCHU La Pitié SalpétrièreParisFrance

Personalised recommendations