World Journal of Urology

, Volume 33, Issue 10, pp 1623–1633 | Cite as

Phosphodiesterase type 2 distribution in the guinea pig urinary bladder

  • M. S. Rahnama’i
  • R. Hohnen
  • Ph. E. V. Van Kerrebroeck
  • G. A. van Koeveringe
Original Article



Nitric oxide-stimulated cGMP synthesis represents an important signalling pathway in the urinary bladder. Inhibitors of the PDE1 and PDE5 enzyme have been studied to treat storage and voiding disorders in clinical settings. The distribution of PDE2 in the bladder is unknown. This study focuses on the distribution and site of action of PDE2 within the guinea pig urinary bladder wall.


Six male guinea pig bladders were dissected and treated in 2 ml Krebs’ solution and 10 µM of the specific PDE2 inhibitor, Bay 60-7550 at 36 °C for 30 min. After stimulating tissues with 100 µM of diethylamine-NONOate for 10 min, the tissues were snap frozen and cut in 10 µm sections which were examined for cGMP immune-reactivity, co-stained with either vimentin, synaptic vesicle protein 2, calcitonin gene-related protein and protein gene product 9.5.


PDE2 inhibitor Bay 60-7550 inhibits cGMP breakdown the most in the urothelial and suburothelial layers, as well as on the nerve fibres. After inhibition by Bay 60-7550, cGMP was mainly expressed in the intermuscle interstitial cells and the nerve fibres of the outer muscle layers of lateral wall, indicating the presence of PDE2 activity.

Discussion and conclusion

Our study is the first to show the distribution of PDE2 in the bladder which was shown to be present in the urothelium, mainly umbrella cells, the interstitial cells of the suburothelium and the outer muscle, as well as in nerve fibres.


Phosphodiesterase type 2 PDE2 Bladder Urothelium Overactive bladder syndrome OAB 


  1. 1.
    Smet PJ, Jonavicius J, Marshall VR, de Vente J (1996) Distribution of nitric oxide synthase-immunoreactive nerves and identification of the cellular targets of nitric oxide in guinea-pig and human urinary bladder by cGMP immunohistochemistry. Neuroscience 71(2):337–348CrossRefPubMedGoogle Scholar
  2. 2.
    Gillespie JI, Drake MJ (2004) The actions of sodium nitroprusside and the phosphodiesterase inhibitor dipyridamole on phasic activity in the isolated guinea-pig bladder. BJU Int 93(6):851–858CrossRefPubMedGoogle Scholar
  3. 3.
    de Jongh R, van Koeveringe GA, van Kerrebroeck PE, Markerink-van Ittersum M, de Vente J, Gillespie JI (2007) Alterations to network of NO/cGMP-responsive interstitial cells induced by outlet obstruction in guinea-pig bladder. Cell Tissue Res 330(1):147–160CrossRefPubMedGoogle Scholar
  4. 4.
    Gillespie JI, Markerink-van Ittersum M, De Vente J (2006) Endogenous nitric oxide/cGMP signalling in the guinea pig bladder: evidence for distinct populations of sub-urothelial interstitial cells. Cell Tissue Res 325(2):325–332CrossRefPubMedGoogle Scholar
  5. 5.
    Gillespie JI, Markerink-van Ittersum M, de Vente J (2005) Expression of neuronal nitric oxide synthase (nNOS) and nitric-oxide-induced changes in cGMP in the urothelial layer of the guinea pig bladder. Cell Tissue Res 321(3):341–351CrossRefPubMedGoogle Scholar
  6. 6.
    Gillespie JI, Markerink-van Ittersum M, de Vente J (2004) cGMP-generating cells in the bladder wall: identification of distinct networks of interstitial cells. BJU Int 94(7):1114–1124CrossRefPubMedGoogle Scholar
  7. 7.
    Beavo JA (1995) Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol Rev 75(4):725–748PubMedGoogle Scholar
  8. 8.
    de Vente J, Markerink-vanIttersum M, Vles JS (2006) The role of phosphodiesterase isoforms 2, 5, and 9 in the regulation of NO-dependent and NO-independent cGMP production in the rat cervical spinal cord. J Chem Neuroanat 31(4):275–303CrossRefPubMedGoogle Scholar
  9. 9.
    Archer SL, Michelakis ED (2009) Phosphodiesterase type 5 inhibitors for pulmonary arterial hypertension. N Engl J Med 361(19):1864–1871CrossRefPubMedGoogle Scholar
  10. 10.
    Rosenzweig EB (2010) Tadalafil for the treatment of pulmonary arterial hypertension. Expert Opin Pharmacother 11(1):127–132. doi:10.1517/14656560903413542 CrossRefPubMedGoogle Scholar
  11. 11.
    Feldman AM, McNamara DM (2002) Reevaluating the role of phosphodiesterase inhibitors in the treatment of cardiovascular disease. Clin Cardiol 25(6):256–262CrossRefPubMedGoogle Scholar
  12. 12.
    Halene TB, Siegel SJ (2007) PDE inhibitors in psychiatry: future options for dementia, depression and schizophrenia? Drug Discov Today 12(19–20):870–878CrossRefPubMedGoogle Scholar
  13. 13.
    Morales AM, Mirone V, Dean J, Costa P (2009) Vardenafil for the treatment of erectile dysfunction: an overview of the clinical evidence. Clin Interv Aging 4:463–472PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Rowlands TE, Donnelly R (2007) Medical therapy for intermittent claudication. Eur J Vasc Endovasc Surg 34(3):314–321CrossRefPubMedGoogle Scholar
  15. 15.
    Rahnama’i MS, Uckert S, Hohnen R, van Koeveringe GA (2013) The role of phosphodiesterases in bladder pathophysiology. Nat Rev Urol 10(7):414–424CrossRefPubMedGoogle Scholar
  16. 16.
    Uckert S, Kuczyk MA, Oelke M (2013) Phosphodiesterase inhibitors in clinical urology. Expert Rev Clin Pharmacol 6(3):323–332CrossRefPubMedGoogle Scholar
  17. 17.
    Oelke M, Bachmann A, Descazeaud A, Emberton M, Gravas S, Michel MC et al (2013) EAU guidelines on the treatment and follow-up of non-neurogenic male lower urinary tract symptoms including benign prostatic obstruction. Eur Urol 64(1):118–140CrossRefPubMedGoogle Scholar
  18. 18.
    Fock EM, Lavrova EA, Bachteeva VT, Chernigovskaya EV, Parnova RG (2004) Nitric oxide inhibits arginine-vasotocin-induced increase of water osmotic permeability in frog urinary bladder. Pflug Arch 448(2):197–203CrossRefGoogle Scholar
  19. 19.
    Zhai K, Chang Y, Wei B, Liu Q, Leblais V, Fischmeister R et al (2014) Phosphodiesterase types 3 and 4 regulate the phasic contraction of neonatal rat bladder smooth myocytes via distinct mechanisms. Cell Signal 26(5):1001–1010CrossRefPubMedGoogle Scholar
  20. 20.
    Truss MC, Uckert S, Stief CG, Forssmann WG, Jonas U (1996) Cyclic nucleotide phosphodiesterase (PDE) isoenzymes in the human detrusor smooth muscle. II. Effect of various PDE inhibitors on smooth muscle tone and cyclic nucleotide levels in vitro. Urol Res 24(3):129–134CrossRefPubMedGoogle Scholar
  21. 21.
    Uckert S, Kuthe A, Jonas U, Stief CG (2001) Characterization and functional relevance of cyclic nucleotide phosphodiesterase isoenzymes of the human prostate. J Urol 166(6):2484–2490CrossRefPubMedGoogle Scholar
  22. 22.
    Podzuweit T, Nennstiel P, Muller A (1995) Isozyme selective inhibition of cGMP-stimulated cyclic nucleotide phosphodiesterases by erythro-9-(2-hydroxy-3-nonyl) adenine. Cell Signal 7(7):733–738CrossRefPubMedGoogle Scholar
  23. 23.
    Boess FG, Hendrix M, van der Staay FJ, Erb C, Schreiber R, van Staveren W et al (2004) Inhibition of phosphodiesterase 2 increases neuronal cGMP, synaptic plasticity and memory performance. Neuropharmacology 47(7):1081–1092CrossRefPubMedGoogle Scholar
  24. 24.
    Rahnama’i MS, van Koeveringe GA, Hohnen R, Ona S, van Kerrebroeck PE, de Wachter SG (2013) Distribution of phosphodiesterase type 5 (PDE5) in the lateral wall of the guinea pig urinary bladder. BJU Int 112(2):246–257CrossRefPubMedGoogle Scholar
  25. 25.
    de Vente J, Markerink-van Ittersum M, Axer H, Steinbusch HW (2001) Nitric-oxide-induced cGMP synthesis in cholinergic neurons in the rat brain. Exp Brain Res 136(4):480–491CrossRefPubMedGoogle Scholar
  26. 26.
    van Staveren WC, Steinbusch HW, Markerink-van Ittersum M, de Behrends S, Vente J (2004) Species differences in the localization of cGMP-producing and NO-responsive elements in the mouse and rat hippocampus using cGMP immunocytochemistry. Eur J Neurosci 19(8):2155–2168CrossRefPubMedGoogle Scholar
  27. 27.
    Himms-Hagen J, Cui J, Lynn Sigurdson S (1990) Sympathetic and sensory nerves in control of growth of brown adipose tissue: effects of denervation and of capsaicin. Neurochem Int 17(2):271–279CrossRefPubMedGoogle Scholar
  28. 28.
    Kong JH, Adelman JP, Fuchs PA (2008) Expression of the SK2 calcium-activated potassium channel is required for cholinergic function in mouse cochlear hair cells. J Physiol 586(Pt 22):5471–5485PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Kuniyoshi K, Ohtori S, Ochiai N, Murata R, Matsudo T, Yamada T et al (2007) Characteristics of sensory DRG neurons innervating the wrist joint in rats. Eur J Pain 11(3):323–328CrossRefPubMedGoogle Scholar
  30. 30.
    Ramos-Vara JA, Miller MA (2007) Immunohistochemical detection of protein gene product 9.5 (PGP 9.5) in canine epitheliotropic T-cell lymphoma (mycosis fungoides). Vet Pathol 44(1):74–79CrossRefPubMedGoogle Scholar
  31. 31.
    Sadhu K, Hensley K, Florio VA, Wolda SL (1999) Differential expression of the cyclic GMP-stimulated phosphodiesterase PDE2A in human venous and capillary endothelial cells. J Histochem Cytochem 47(7):895–906CrossRefPubMedGoogle Scholar
  32. 32.
    Rahnama’i MS, van Koeveringe GA, Essers PB, de Wachter SG, de Vente J, van Kerrebroeck PE et al (2010) Prostaglandin receptor EP1 and EP2 site in guinea pig bladder urothelium and lamina propria. J Urol 183(3):1241–1247. doi:10.1016/j.juro.2009.11.004 CrossRefPubMedGoogle Scholar
  33. 33.
    Lagou M, Drake MJ, Markerink-Van Ittersum M, De Vente J, Gillespie JI (2006) Interstitial cells and phasic activity in the isolated mouse bladder. BJU Int 98(3):643–650CrossRefPubMedGoogle Scholar
  34. 34.
    Park H, Clark E, Conklin JL (2003) Effects of phosphodiesterase inhibitors on oesophageal neuromuscular functions. Neurogastroenterol Motil 15(6):625–633CrossRefPubMedGoogle Scholar
  35. 35.
    de Groat WC, Yoshimura N (2009) Afferent nerve regulation of bladder function in health and disease. Handb Exp Pharmacol 194:91–138CrossRefPubMedGoogle Scholar
  36. 36.
    Birder LA (2006) Urinary bladder urothelium: molecular sensors of chemical/thermal/mechanical stimuli. Vasc Pharmacol 45(4):221–226CrossRefGoogle Scholar
  37. 37.
    Smet PJ, Moore KH, Jonavicius J (1997) Distribution and colocalization of calcitonin gene-related peptide, tachykinins, and vasoactive intestinal peptide in normal and idiopathic unstable human urinary bladder. Lab Invest 77(1):37–49PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • M. S. Rahnama’i
    • 1
    • 2
  • R. Hohnen
    • 2
  • Ph. E. V. Van Kerrebroeck
    • 1
    • 2
  • G. A. van Koeveringe
    • 1
    • 2
  1. 1.Department of UrologyMaastricht University Medical Centre (MUMC+)MaastrichtThe Netherlands
  2. 2.The Department of Psychiatry and Neuropsychology, European Graduate School of Neuroscience (EURON)Maastricht UniversityMaastrichtThe Netherlands

Personalised recommendations