Advertisement

World Journal of Urology

, Volume 31, Issue 6, pp 1427–1432 | Cite as

Increasing prevalence of ciprofloxacin resistance in extended-spectrum-β-lactamase-producing Escherichia coli urinary isolates

  • G. Bonkat
  • G. Müller
  • O. Braissant
  • R. Frei
  • S. Tschudin-Suter
  • M. Rieken
  • S. Wyler
  • T. C. Gasser
  • A. Bachmann
  • A. F. Widmer
Original Article

Abstract

Purpose

To describe the incidence and drug susceptibility profiles of uropathogenic extended-spectrum-β-lactamase-producing Escherichia coli (ESBL-EC) during a 10-year period and to identify differences in resistance patterns between urological and non-urological ESBL-EC isolates.

Methods

Retrospective analysis of 191,564 urine samples obtained during 2001 to 2010 at the University Hospital Basel, Switzerland. The computerized database of the Clinical Microbiology Laboratory and the Division of Infectious Diseases and Hospital Epidemiology was used to identify ESBL-EC positive urine samples. ESBL-EC isolates were stratified according their origin into two groups: Urology and non-Urology isolates.

Results

The rate of ESBL-EC positive urine samples increased significantly during the study period (3 in 2001 compared to 55 in 2010, p < 0.05). The most active agents were imipenem, meropenem, and fosfomycin (100 %), followed by amikacin (99.1 %) and nitrofurantoin (84 %). The least active substances were ampicillin-clavulanate (20 %), sulfamethoxazole (28 %), and ciprofloxacin (29.6 %). ESBL-EC isolates from urological and non-urological patients showed similar susceptibility profiles. However, ESBL-EC isolates from urological patients were significantly less susceptible to ciprofloxacin compared to non-urological isolates (14.7 vs. 32.7 %, p < 0.05).

Conclusions

The rate of urinary ESBL-EC isolates is increasing. Their susceptibility to nitrofurantoin, fosfomycin, and carbapenems is excellent, whereas ampicillin-clavulanate, sulfamethoxazole, and ciprofloxacin demonstrate only low susceptibility. In particular, the use of ciprofloxacin should be strictly avoided in urologic patients with suspicion for an ESBL-EC urinary tract infection as well as routine antibiotic prophylaxis prior to urological interventions if not explicit indicated by current international guidelines or local resistance patterns.

Keywords

Epidemiology ESBL Escherichia coli Urinary tract infection Urology 

Notes

Conflict of interest

None of the contributing authors has any conflict of interest relevant to the subject matter or materials discussed in the manuscript. No funding or other financial support was received.

References

  1. 1.
    Ronald A (2002) The etiology of urinary tract infection: traditional and emerging pathogens. Am J Med 113(Suppl 1A):14S–19SPubMedCrossRefGoogle Scholar
  2. 2.
    Gupta K, Hooton TM, Stamm WE (2001) Increasing antimicrobial resistance and the management of uncomplicated community-acquired urinary tract infections. Ann Intern Med 135:41–50PubMedCrossRefGoogle Scholar
  3. 3.
    Naber KG, Schito G, Botto H, Palou J, Mazzei T (2008) Surveillance study in Europe and Brazil on clinical aspects and Antimicrobial Resistance Epidemiology in Females with Cystitis (ARESC): implications for empiric therapy. Eur Urol 54:1164–1175PubMedCrossRefGoogle Scholar
  4. 4.
    Geser N, Stephan R, Kuhnert P, Zbinden R, Kaeppeli U, Cernela N, Haechler H (2011) Fecal carriage of extended-spectrum beta-lactamase-producing Enterobacteriaceae in swine and cattle at slaughter in Switzerland. J Food Prot 74:446–449PubMedCrossRefGoogle Scholar
  5. 5.
    Li B, Sun JY, Liu QZ, Han LZ, Huang XH, Ni YX (2011) High prevalence of CTX-M beta-lactamases in faecal Escherichia coli strains from healthy humans in Fuzhou, China. Scand J Infect Dis 43:170–174PubMedCrossRefGoogle Scholar
  6. 6.
    Pitout JD, Laupland KB (2008) Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 8:159–166PubMedCrossRefGoogle Scholar
  7. 7.
    Ben-Ami R, Rodriguez-Bano J, Arslan H, Pitout JD, Quentin C, Calbo ES, Azap OK, Arpin C, Pascual A, Livermore DM, Garau J, Carmeli Y (2009) A multinational survey of risk factors for infection with extended-spectrum beta-lactamase-producing enterobacteriaceae in nonhospitalized patients. Clin Infect Dis 49:682–690PubMedCrossRefGoogle Scholar
  8. 8.
    Talbot GH, Bradley J, Edwards JE Jr, Gilbert D, Scheld M, Bartlett JG (2006) Bad bugs need drugs: an update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. Clin Infect Dis 42:657–668PubMedCrossRefGoogle Scholar
  9. 9.
    Grabe M, Bjerklund-Johansen TE, Botto H, Wullt B, Cek M, Naber KG, Pickard RS, Tenke P, Wagenlehner F (2012) Guidelines on urological infections. Eur Assoc Urol. http://www.uroweb.org
  10. 10.
    Wolf JS, Bennet CJ, Dmochowski RR, Hollenbeck BK, Pearle MS, Schaeffer AJ (2012) Best practice policy statement on urologic surgery antimicrobial prophylaxis. Am Urol Assoc. http://www.auanet.org/content/clinical-practice-guidelines/clinical-guidelines.cfm#2
  11. 11.
    Kuster SP, Hasse B, Huebner V, Bansal V, Zbinden R, Ruef C, Ledergerber B, Weber R (2010) Risks factors for infections with extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae at a tertiary care university hospital in Switzerland. Infection 38:33–40PubMedCrossRefGoogle Scholar
  12. 12.
    Tschudin-Sutter S, Frei R, Dangel M, Stranden A, Widmer AF (2012) Rate of transmission of extended-spectrum beta-lactamase-producing enterobacteriaceae without contact isolation. Clin Infect Dis 55:1505–1511Google Scholar
  13. 13.
    Rodriguez-Bano J, Navarro MD, Romero L, Martinez–Martinez L, Muniain MA, Perea EJ, Perez-Cano R, Pascual A (2004) Epidemiology and clinical features of infections caused by extended-spectrum beta-lactamase-producing Escherichia coli in nonhospitalized patients. J Clin Microbiol 42:1089–1094PubMedCrossRefGoogle Scholar
  14. 14.
    Overdevest I, Willemsen I, Rijnsburger M, Eustace A, Xu L, Hawkey P, Heck M, Savelkoul P, Vandenbroucke-Grauls C, van der Zwaluw K, Huijsdens X, Kluytmans J (2011) Extended-spectrum beta-lactamase genes of Escherichia coli in chicken meat and humans, The Netherlands. Emerg Infect Dis 17:1216–1222PubMedCrossRefGoogle Scholar
  15. 15.
    Ena J, Arjona F, Martinez-Peinado C, Lopez-Perezagua MM, Amador C (2006) Epidemiology of urinary tract infections caused by extended-spectrum beta-lactamase-producing Escherichia coli. Urology 68:1169–1174PubMedCrossRefGoogle Scholar
  16. 16.
    Gupta K, Hooton TM, Naber KG, Wullt B, Colgan R, Miller LG, Moran GJ, Nicolle LE, Raz R, Schaeffer AJ, Soper DE (2011) International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: a 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis 52:e103–e120PubMedCrossRefGoogle Scholar
  17. 17.
    Wagenlehner FM, van OE, Tenke P, Tandogdu Z, Cek M, Grabe M, Wullt B, Pickard R, Naber KG, Pilatz A, Weidner W, Bjerklund-Johansen TE (2012) Infective complications after prostate biopsy: outcome of the Global Prevalence Study of Infections in Urology (GPIU) 2010 and 2011, a prospective multinational multicentre prostate biopsy study. Eur Urol [Epub ahead of print] Google Scholar
  18. 18.
    Blaettler L, Mertz D, Frei R, Elzi L, Widmer AF, Battegay M, Fluckiger U (2009) Secular trend and risk factors for antimicrobial resistance in Escherichia coli isolates in Switzerland 1997–2007. Infection 37:534–539PubMedCrossRefGoogle Scholar
  19. 19.
    Schito GC (2003) Why fosfomycin trometamol as first line therapy for uncomplicated UTI? Int J Antimicrob Agents 22(Suppl 2):79–83PubMedCrossRefGoogle Scholar
  20. 20.
    Estebanez A, Pascual R, Gil V, Ortiz F, Santibanez M, Perez BC (2009) Fosfomycin in a single dose versus a 7-day course of amoxicillin-clavulanate for the treatment of asymptomatic bacteriuria during pregnancy. Eur J Clin Microbiol Infect Dis 28:1457–1464PubMedCrossRefGoogle Scholar
  21. 21.
    Garau J (2008) Other antimicrobials of interest in the era of extended-spectrum beta-lactamases: fosfomycin, nitrofurantoin and tigecycline. Clin Microbiol Infect 14(Suppl 1):198–202PubMedCrossRefGoogle Scholar
  22. 22.
    de Cueto M, Hernandez JR, Lopez-Cerero L, Morillo C, Pascual A (2006) Activity of fosfomycin against extended-spectrum beta-lactamase producing Escherichia coli and Klebsiella pneumoniae. Enferm Infecc Microbiol Clin 24:613–616PubMedCrossRefGoogle Scholar
  23. 23.
    Falagas ME, Kastoris AC, Kapaskelis AM, Karageorgopoulos DE (2010) Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum beta-lactamase producing, Enterobacteriaceae infections: a systematic review. Lancet Infect Dis 10:43–50PubMedCrossRefGoogle Scholar
  24. 24.
    Oteo J, Orden B, Bautista V, Cuevas O, Arroyo M, Martinez-Ruiz R, Perez-Vazquez M, Alcaraz M, Garcia-Cobos S, Campos J (2009) CTX-M-15-producing urinary Escherichia coli O25b-ST131-phylogroup B2 has acquired resistance to fosfomycin. J Antimicrob Chemother 64:712–717PubMedCrossRefGoogle Scholar
  25. 25.
    Oteo J, Bautista V, Lara N, Cuevas O, Arroyo M, Fernandez S, Lazaro E, de Abajo FJ, Campos J (2010) Parallel increase in community use of fosfomycin and resistance to fosfomycin in extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. J Antimicrob Chemother 65:2459–2463PubMedCrossRefGoogle Scholar
  26. 26.
    Alhambra A, Cuadros JA, Cacho J, Gomez-Garces JL, Alos JI (2004) In vitro susceptibility of recent antibiotic-resistant urinary pathogens to ertapenem and 12 other antibiotics. J Antimicrob Chemother 53:1090–1094PubMedCrossRefGoogle Scholar
  27. 27.
    Mody RM, Erwin DP, Summers AM, Carrero HA, Selby EB, Ewell AJ, Moran KA (2007) Ertapenem susceptibility of extended spectrum beta-lactamase-producing organisms. Ann Clin Microbiol Antimicrob 6:6PubMedCrossRefGoogle Scholar
  28. 28.
    Tamayo J, Orden B, Cacho J, Cuadros J, Gomez-Garces JL, Alos JI (2007) Activity of ertapenem and other antimicrobials against ESBL-producing enterobacteria isolated from urine in patients from Madrid. Rev Esp Quimioter 20:334–338PubMedGoogle Scholar
  29. 29.
    Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, Chaudhary U, Doumith M, Giske CG, Irfan S, Krishnan P, Kumar AV, Maharjan S, Mushtaq S, Noorie T, Paterson DL, Pearson A, Perry C, Pike R, Rao B, Ray U, Sarma JB, Sharma M, Sheridan E, Thirunarayan MA, Turton J, Upadhyay S, Warner M, Welfare W, Livermore DM, Woodford N (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10:597–602PubMedCrossRefGoogle Scholar
  30. 30.
    Thomson KS, Moland ES (2001) Cefepime, piperacillin-tazobactam, and the inoculum effect in tests with extended-spectrum beta-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother 45:3548–3554PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • G. Bonkat
    • 1
    • 2
  • G. Müller
    • 1
  • O. Braissant
    • 1
    • 2
  • R. Frei
    • 3
  • S. Tschudin-Suter
    • 4
  • M. Rieken
    • 1
  • S. Wyler
    • 1
  • T. C. Gasser
    • 1
  • A. Bachmann
    • 1
  • A. F. Widmer
    • 4
  1. 1.Department of UrologyUniversity Hospital BaselBaselSwitzerland
  2. 2.Laboratory of Biomechanics and Biocalorimetry (LOB2), Faculty of MedicineUniversity of BaselBaselSwitzerland
  3. 3.Clinical Microbiology LaboratoryUniversity Hospital BaselBaselSwitzerland
  4. 4.Division of Infectious Diseases and Hospital EpidemiologyUniversity Hospital BaselBaselSwitzerland

Personalised recommendations