World Journal of Urology

, Volume 30, Issue 6, pp 847–852 | Cite as

Accurate risk assessment of patients with asymptomatic hematuria for the presence of bladder cancer

  • Eugene K. Cha
  • Lenuta-Ancuta Tirsar
  • Christian Schwentner
  • Joerg Hennenlotter
  • Paul J. Christos
  • Arnulf Stenzl
  • Christine Mian
  • Thomas Martini
  • Armin Pycha
  • Shahrokh F. ShariatEmail author
  • Bernd J. Schmitz-Dräger
Original Article



Bladder cancer is frequently diagnosed during a workup for hematuria. However, most patients with microscopic hematuria and many with gross hematuria are not appropriately referred to urologists. We hypothesized that in patients presenting with asymptomatic hematuria the risk of having bladder cancer can be predicted with high accuracy. Toward this end, we analyzed risk factors in patients with asymptomatic hematuria and developed a nomogram for the prediction of bladder cancer presence.


Data from 1,182 consecutive subjects without a history of bladder cancer undergoing initial evaluation for asymptomatic hematuria were collected at three centers. Clinical risk factors including age, gender, smoking status, and degree of hematuria were recorded. All subjects underwent standard workup including voided cytology, upper tract imaging, and cystourethroscopy. Factors associated with the presence of bladder cancer were evaluated by univariable and multivariable logistic regression analyses. The multivariable analysis was used to construct a nomogram. Internal validation was performed using 200 bootstrap samples.


Of the 1,182 subjects who presented with asymptomatic hematuria, 245 (20.7 %) had bladder cancer. Increasing age (OR = 1.03, p < 0.0001), smoking history (OR = 3.72, p < 0.0001), gross hematuria (OR = 1.71, p = 0.002), and positive cytology (OR = 14.71, p < 0.0001) were independent predictors of bladder cancer presence. The multivariable model achieved 83.1 % accuracy for predicting the presence of bladder cancer.


Bladder cancer presence can be predicted with high accuracy in patients who present with asymptomatic hematuria. We developed a nomogram to help optimize referral patterns (i.e., timing and prioritization) of patients with asymptomatic hematuria.


Urinary bladder neoplasms Hematuria Nomograms Early detection of cancer Carcinoma 



We would like to thank Dr. Madhu Mazumdar for her supervision of the statistical analysis. This research was performed under the auspices of the International Bladder Cancer Network (IBCN). Dr. Paul J. Christos was partially supported by the following grant: Clinical Translational Science Center (CTSC) (UL1-RR024996).

Conflict of interest

The authors certify that they have no actual or potential conflict of interest in relation to this article.


  1. 1.
    Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics. CA Cancer J Clin 60:277–300PubMedCrossRefGoogle Scholar
  2. 2.
    Kirkali Z, Chan T, Manoharan M, Algaba F, Busch C et al (2005) Bladder cancer: epidemiology, staging and grading, and diagnosis. Urology 66:4–34PubMedCrossRefGoogle Scholar
  3. 3.
    Murta-Nascimento C, Schmitz-Drager BJ, Zeegers MP, Steineck G, Kogevinas M et al (2007) Epidemiology of urinary bladder cancer: from tumor development to patient’s death. World J Urol 25:285–295PubMedCrossRefGoogle Scholar
  4. 4.
    Silverman DT, Levin LI, Hoover RN, Hartge P (1989) Occupational risks of bladder cancer in the United States: I. White men. J Natl Cancer Inst 81:1472–1480PubMedCrossRefGoogle Scholar
  5. 5.
    Sutton JM (1990) Evaluation of hematuria in adults. JAMA 263:2475–2480PubMedCrossRefGoogle Scholar
  6. 6.
    Grossfeld GD, Litwin MS, Wolf JS, Hricak H, Shuler CL et al (2001) Evaluation of asymptomatic microscopic hematuria in adults: the American Urological Association best practice policy–part I: definition, detection, prevalence, and etiology. Urology 57:599–603PubMedCrossRefGoogle Scholar
  7. 7.
    Davis R, Jones SJ, Barocas DA, Castle EP, Lang EK, et al. (2012) diagnosis, evaluation and follow-up of asymptomatic microhematuria (AMH) in adults: AUA guideline. American Urological Association Guidelines May 2012Google Scholar
  8. 8.
    Cohen RA, Brown RS (2003) Clinical practice Microscopic hematuria. N Engl J Med 348:2330–2338PubMedCrossRefGoogle Scholar
  9. 9.
    Nieder AM, Lotan Y, Nuss GR, Langston JP, Vyas S et al (2010) Are patients with hematuria appropriately referred to Urology? A multi-institutional questionnaire based survey. Urol Oncol 28:500–503PubMedCrossRefGoogle Scholar
  10. 10.
    Johnson EK, Daignault S, Zhang Y, Lee CT (2008) Patterns of hematuria referral to urologists: does a gender disparity exist? Urology 72:498–502 Discussion 498–502PubMedCrossRefGoogle Scholar
  11. 11.
    Summerton N, Mann S, Rigby AS, Ashley J, Palmer S et al (2002) Patients with new onset haematuria: assessing the discriminant value of clinical information in relation to urological malignancies. Br J Gen Pract 52:284–289PubMedGoogle Scholar
  12. 12.
    Lotan Y, Capitanio U, Shariat SF, Hutterer GC, Karakiewicz PI (2009) Impact of clinical factors, including a point-of-care nuclear matrix protein-22 assay and cytology, on bladder cancer detection. BJU Int 103:1368–1374PubMedCrossRefGoogle Scholar
  13. 13.
    Efron B, Tibshirani R (1993) An introduction to the bootstrap., XviChapman & Hall, New York, p 436Google Scholar
  14. 14.
    Steyerberg EW, Harrell FE Jr, Borsboom GJ, Eijkemans MJ, Vergouwe Y et al (2001) Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol 54:774–781PubMedCrossRefGoogle Scholar
  15. 15.
    Harrell FE Jr, Lee KL, Mark DB (1996) Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 15:361–387PubMedCrossRefGoogle Scholar
  16. 16.
    Lotan Y, Shariat SF, Schmitz-Drager BJ, Sanchez-Carbayo M, Jankevicius F et al (2010) Considerations on implementing diagnostic markers into clinical decision making in bladder cancer. Urol Oncol 28:441–448PubMedCrossRefGoogle Scholar
  17. 17.
    Shariat SF, Lotan Y, Vickers A, Karakiewicz PI, Schmitz-Drager BJ et al (2010) Statistical consideration for clinical biomarker research in bladder cancer. Urol Oncol 28:389–400PubMedCrossRefGoogle Scholar
  18. 18.
    Svatek RS, Lotan Y, Karakiewizc PI, Shariat SF (2008) Screening for bladder cancer using urine-based tumor markers. Minerva Urol Nefrol 60:247–253PubMedGoogle Scholar
  19. 19.
    Gore JL, Lai J, Setodji CM, Litwin MS, Saigal CS (2009) Mortality increases when radical cystectomy is delayed more than 12 weeks: results from a surveillance, epidemiology, and end results-medicare analysis. Cancer 115:988–996PubMedCrossRefGoogle Scholar
  20. 20.
    Wallace DM, Bryan RT, Dunn JA, Begum G, Bathers S (2002) Delay and survival in bladder cancer. BJU Int 89:868–878PubMedCrossRefGoogle Scholar
  21. 21.
    Hollenbeck BK, Dunn RL, Ye Z, Hollingsworth JM, Skolarus TA et al (2010) Delays in diagnosis and bladder cancer mortality. Cancer 116(22):5235–5242PubMedCrossRefGoogle Scholar
  22. 22.
    Shariat SF, Karakiewicz PI, Suardi N, Kattan MW (2008) Comparison of nomograms with other methods for predicting outcomes in prostate cancer: a critical analysis of the literature. Clin Cancer Res 14:4400–4407PubMedCrossRefGoogle Scholar
  23. 23.
    Shariat SF, Karakiewicz PI, Roehrborn CG, Kattan MW (2008) An updated catalog of prostate cancer predictive tools. Cancer 113:3075–3099PubMedCrossRefGoogle Scholar
  24. 24.
    Badalament RA, Hermansen DK, Kimmel M, Gay H, Herr HW et al (1987) The sensitivity of bladder wash flow cytometry, bladder wash cytology, and voided cytology in the detection of bladder carcinoma. Cancer 60:1423–1427PubMedCrossRefGoogle Scholar
  25. 25.
    Shariat SF, Sfakianos JP, Droller MJ, Karakiewicz PI, Meryn S et al (2010) The effect of age and gender on bladder cancer: a critical review of the literature. BJU Int 105:300–308PubMedCrossRefGoogle Scholar
  26. 26.
    Karakiewicz PI, Benayoun S, Zippe C, Ludecke G, Boman H et al (2006) Institutional variability in the accuracy of urinary cytology for predicting recurrence of transitional cell carcinoma of the bladder. BJU Int 97:997–1001PubMedCrossRefGoogle Scholar
  27. 27.
    Buntinx F, Wauters H (1997) The diagnostic value of macroscopic haematuria in diagnosing urological cancers: a meta-analysis. Fam Pract 14:63–68PubMedCrossRefGoogle Scholar
  28. 28.
    Messing EM, Madeb R, Young T, Gilchrist KW, Bram L et al (2006) Long-term outcome of hematuria home screening for bladder cancer in men. Cancer 107:2173–2179PubMedCrossRefGoogle Scholar
  29. 29.
    Ross PL, Gerigk C, Gonen M, Yossepowitch O, Cagiannos I et al (2002) Comparisons of nomograms and urologists’ predictions in prostate cancer. Semin Urol Oncol 20:82–88PubMedCrossRefGoogle Scholar
  30. 30.
    Walz J, Gallina A, Perrotte P, Jeldres C, Trinh QD et al (2007) Clinicians are poor raters of life-expectancy before radical prostatectomy or definitive radiotherapy for localized prostate cancer. BJU Int 100:1254–1258PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Eugene K. Cha
    • 1
  • Lenuta-Ancuta Tirsar
    • 4
    • 5
  • Christian Schwentner
    • 5
  • Joerg Hennenlotter
    • 5
  • Paul J. Christos
    • 3
  • Arnulf Stenzl
    • 5
  • Christine Mian
    • 6
  • Thomas Martini
    • 7
  • Armin Pycha
    • 7
  • Shahrokh F. Shariat
    • 1
    • 2
    Email author
  • Bernd J. Schmitz-Dräger
    • 4
  1. 1.Department of UrologyNew York-Presbyterian Hospital, Weill Cornell Medical CollegeNew YorkUSA
  2. 2.Division of Medical OncologyNew York-Presbyterian Hospital, Weill Cornell Medical CollegeNew YorkUSA
  3. 3.Division of Biostatistics and EpidemiologyNew York-Presbyterian Hospital, Weill Cornell Medical CollegeNew YorkUSA
  4. 4.Department of UrologyEuromedClinic, Fürth, and Urologie24NürnbergGermany
  5. 5.Department of UrologyUniversity of TübingenTübingenGermany
  6. 6.Department of PathologyGeneral Hospital of BolzanoBolzanoItaly
  7. 7.Department of UrologyGeneral Hospital of BolzanoBolzanoItaly

Personalised recommendations