World Journal of Urology

, Volume 30, Issue 3, pp 303–310 | Cite as

NF-κB signaling in prostate cancer: A promising therapeutic target?

  • Garima Jain
  • Marcus V. Cronauer
  • Mark Schrader
  • Peter Möller
  • Ralf B. Marienfeld
Topic paper


Prostate carcinoma (PCa) displays a wide variety of genetic alterations, versatile expression profiles as well as cell surface markers. Despite this heterogeneity, a common treatment for advanced PCa is androgen deprivation therapy (ADT). ADT targets the androgen receptor—a member of the nuclear receptor superfamily—which is required for development and function of the prostate and critical for PCa growth and survival. After an initial regression of the tumor during ADT, a large fraction of tumors progress to so-called castration-resistant prostate carcinoma (CRPca) which is highly resistant toward chemotherapy. The ensuing high mortality rates illustrate the importance of novel therapeutic targets for CRPCa. The transcription factor NF-κB was recently proposed as such a potential target for therapeutic intervention in CRPCa. Although NF-κB is essential for the regulation of innate and adaptive immunity recent data suggest a role of NF-κB in cancer initiation and progression. However, the exact function of NF-κB signaling in PCa is still a matter of debate. Here, we review known roles of NF-κB signaling in PCa and emphasize the crosstalk of NF-κB and androgen receptor signaling. Finally, we discuss potential therapeutic relevance of blocking NF-κB in PCa.


NF-κB Prostate carcinoma Androgen receptor Castration 



Androgen deprivation therapy


Androgen receptor


Androgen receptor element


B-cell activating factor


Castration-resistant PCa




DNA methyl transferase I




Histone deacetylase


Heat shock protein


Inhibitor of NF-κB


IκB kinase


NF-κB inducing kinase


Prostate carcinoma


Steroid hormone binding globuline


Signal transducer and activator of transcription


Transforming Growth Factor β


Tumor necrosis factor alpha


TNFR1-associated death domain protein


  1. 1.
    Burchardt M, Burchardt T, Chen MW, Hayek OR, Knight C, Shabsigh A, de la Taille A, Buttyan R (2000) Vascular endothelial growth factor-A expression in the rat ventral prostate gland and the early effects of castration. Prostate 43(3):184–194PubMedGoogle Scholar
  2. 2.
    Russell PJ, Bennett S, Stricker P (1998) Growth factor involvement in progression of prostate cancer. Clin Chem 44(4):705–723PubMedGoogle Scholar
  3. 3.
    Gao J, Arnold JT, Isaacs JT (2001) Conversion from a paracrine to an autocrine mechanism of androgen-stimulated growth during malignant transformation of prostatic epithelial cells. Cancer Res 61(13):5038–5044PubMedGoogle Scholar
  4. 4.
    Puhr M, Santer FR, Neuwirt H, Marcias G, Hobisch A, Culig Z (2010) SOCS-3 antagonises the proliferative and migratory effects of fibroblast growth factor-2 in prostate cancer by inhibition of p44/p42 MAPK signalling. Endocr Relat Cancer 17(2):525–538PubMedGoogle Scholar
  5. 5.
    Buttyan R, Ghafar MA, Shabsigh A (2000) The effects of androgen deprivation on the prostate gland: cell death mediated by vascular regression. Curr Opin Urol 10(5):415–420PubMedGoogle Scholar
  6. 6.
    Linja MJ, Savinainen KJ, Saramaki OR, Tammela TL, Vessella RL, Visakorpi T (2001) Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res 61(9):3550–3555PubMedGoogle Scholar
  7. 7.
    Zhao XY, Malloy PJ, Krishnan AV, Swami S, Navone NM, Peehl DM, Feldman D (2000) Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat Med 6(6):703–706PubMedGoogle Scholar
  8. 8.
    Montgomery RB, Mostaghel EA, Vessella R, Hess DL, Kalhorn TF, Higano CS, True LD, Nelson PS (2008) Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res 68(11):4447–4454PubMedGoogle Scholar
  9. 9.
    Stanbrough M, Bubley GJ, Ross K, Golub TR, Rubin MA, Penning TM, Febbo PG, Balk SP (2006) Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res 66(5):2815–2825PubMedGoogle Scholar
  10. 10.
    Gao H, Ouyang X, Banach-Petrosky WA, Gerald WL, Shen MM, bate-Shen C (2006) Combinatorial activities of Akt and B-Raf/Erk signaling in a mouse model of androgen-independent prostate cancer. Proc Natl Acad Sci U S A 103(39):14477–14482PubMedGoogle Scholar
  11. 11.
    Ammirante M, Luo JL, Grivennikov S, Nedospasov S, Karin M (2010) B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 464(7286):302–305PubMedGoogle Scholar
  12. 12.
    Suh J, Payvandi F, Edelstein LC, Amenta PS, Zong WX, Gelinas C, Rabson AB (2002) Mechanisms of constitutive NF-kappaB activation in human prostate cancer cells. Prostate 52(3):183–200PubMedGoogle Scholar
  13. 13.
    Fradet V, Lessard L, Begin LR, Karakiewicz P, Masson AM, Saad F (2004) Nuclear factor-kappaB nuclear localization is predictive of biochemical recurrence in patients with positive margin prostate cancer. Clin Cancer Res 10(24):8460–8464PubMedGoogle Scholar
  14. 14.
    Yemelyanov A, Gasparian A, Lindholm P, Dang L, Pierce JW, Kisseljov F, Karseladze A, Budunova I (2006) Effects of IKK inhibitor PS1145 on NF-kappaB function, proliferation, apoptosis and invasion activity in prostate carcinoma cells. Oncogene 25(3):387–398PubMedGoogle Scholar
  15. 15.
    Ross JS, Kallakury BV, Sheehan CE, Fisher HA, Kaufman RP Jr, Kaur P, Gray K, Stringer B (2004) Expression of nuclear factor-kappa B and I kappa B alpha proteins in prostatic adenocarcinomas: correlation of nuclear factor-kappa B immunoreactivity with disease recurrence. Clin Cancer Res 10(7):2466–2472PubMedGoogle Scholar
  16. 16.
    Zhang L, Altuwaijri S, Deng F, Chen L, Lal P, Bhanot UK, Korets R, Wenske S, Lilja HG, Chang C, Scher HI, Gerald WL (2009) NF-kappaB regulates androgen receptor expression and prostate cancer growth. Am J Pathol 175(2):489–499PubMedGoogle Scholar
  17. 17.
    Sweeney C, Li L, Shanmugam R, Bhat-Nakshatri P, Jayaprakasan V, Baldridge LA, Gardner T, Smith M, Nakshatri H, Cheng L (2004) Nuclear factor-kappaB is constitutively activated in prostate cancer in vitro and is overexpressed in prostatic intraepithelial neoplasia and adenocarcinoma of the prostate. Clin Cancer Res 10(16):5501–5507PubMedGoogle Scholar
  18. 18.
    Shukla S, MacLennan GT, Fu P, Patel J, Marengo SR, Resnick MI, Gupta S (2004) Nuclear factor-kappaB/p65 (Rel A) is constitutively activated in human prostate adenocarcinoma and correlates with disease progression. Neoplasia 6(4):390–400PubMedGoogle Scholar
  19. 19.
    Zhang Q, Helfand BT, Jang TL, Zhu LJ, Chen L, Yang XJ, Kozlowski J, Smith N, Kundu SD, Yang G, Raji AA, Javonovic B, Pins M, Lindholm P, Guo Y, Catalona WJ, Lee C (2009) Nuclear factor-kappaB-mediated transforming growth factor-beta-induced expression of vimentin is an independent predictor of biochemical recurrence after radical prostatectomy. Clin Cancer Res 15(10):3557–3567PubMedGoogle Scholar
  20. 20.
    Oeckinghaus A, Ghosh S (2009) The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 1(4):a000034PubMedGoogle Scholar
  21. 21.
    Hayden MS, Ghosh S (2004) Signaling to NF-kappaB. Genes Dev 18(18):2195–2224PubMedGoogle Scholar
  22. 22.
    Marienfeld R, May MJ, Berberich I, Serfling E, Ghosh S, Neumann M (2003) RelB forms transcriptionally inactive complexes with RelA/p65. J Biol Chem 278(22):19852–19860PubMedGoogle Scholar
  23. 23.
    Solt LA, May MJ (2008) (2008) The IkappaB kinase complex: master regulator of NF-kappaB signaling. Immunol Res 42(1–3):3–18PubMedGoogle Scholar
  24. 24.
    Solt LA, Madge LA, Orange JS, May MJ (2007) Interleukin-1-induced NF-kappaB activation is NEMO-dependent but does not require IKKbeta. J Biol Chem 282(12):8724–8733PubMedGoogle Scholar
  25. 25.
    Luedde T, Assmus U, Wustefeld T, Meyer zu V, Roskams T, Schmidt-Supprian M, Rajewsky K, Brenner DA, Manns MP, Pasparakis M, Trautwein C (2005) Deletion of IKK2 in hepatocytes does not sensitize these cells to TNF-induced apoptosis but protects from ischemia/reperfusion injury. J Clin Invest 115(4):849–859PubMedGoogle Scholar
  26. 26.
    Schmidt-Supprian M, Tian J, Ji H, Terhorst C, Bhan AK, Grant EP, Pasparakis M, Casola S, Coyle AJ, Rajewsky K (2004) I kappa B kinase 2 deficiency in T cells leads to defects in priming, B cell help, germinal center reactions, and homeostatic expansion. J Immunol 173(3):1612–1619PubMedGoogle Scholar
  27. 27.
    Palkowitsch L, Leidner J, Ghosh S, Marienfeld RB (2008) Phosphorylation of serine 68 in the IkappaB kinase (IKK)-binding domain of NEMO interferes with the structure of the IKK complex and tumor necrosis factor-alpha-induced NF-kappaB activity. J Biol Chem 283(1):76–86PubMedGoogle Scholar
  28. 28.
    Scheidereit C (2006) IkappaB kinase complexes: gateways to NF-kappaB activation and transcription. Oncogene 25(51):6685–6705PubMedGoogle Scholar
  29. 29.
    Colombatti M, Grasso S, Porzia A, Fracasso G, Scupoli MT, Cingarlini S, Poffe O, Naim HY, Heine M, Tridente G, Mainiero F, Ramarli D (2009) The prostate specific membrane antigen regulates the expression of IL-6 and CCL5 in prostate tumour cells by activating the MAPK pathways. PLoS One 4(2):e4608PubMedGoogle Scholar
  30. 30.
    Colombara M, Antonini V, Riviera AP, Mainiero F, Strippoli R, Merola M, Fracasso G, Poffe O, Brutti N, Tridente G, Colombatti M, Ramarli D (2005) Constitutive activation of p38 and ERK1/2 MAPKs in epithelial cells of myasthenic thymus leads to IL-6 and RANTES overexpression: effects on survival and migration of peripheral T and B cells. J Immunol 175(10):7021–7028PubMedGoogle Scholar
  31. 31.
    Karin M (2008) The IkappaB kinase—a bridge between inflammation and cancer. Cell Res 18(3):334–342PubMedGoogle Scholar
  32. 32.
    Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441(7092):431–436PubMedGoogle Scholar
  33. 33.
    Neumann M, Marienfeld R, Serfling E (1997) Rel/NF-kappa B transcription factors and cancer. Int J Oncol 11(6):1335–1347PubMedGoogle Scholar
  34. 34.
    Deeb D, Gao X, Liu Y, Jiang D, Divine GW, Arbab AS, Dulchavsky SA, Gautam SC (2011) Synthetic triterpenoid CDDO prevents the progression and metastasis of prostate cancer in TRAMP mice by inhibiting survival signaling. Carcinogenesis 32(5):757–764PubMedGoogle Scholar
  35. 35.
    Deeb D, Gao X, Jiang H, Arbab AS, Dulchavsky SA, Gautam SC (2010) Growth inhibitory and apoptosis-inducing effects of xanthohumol, a prenylated chalone present in hops, in human prostate cancer cells. Anticancer Res 30(9):3333–3339PubMedGoogle Scholar
  36. 36.
    Iwanaga R, Ozono E, Fujisawa J, Ikeda MA, Okamura N, Huang Y, Ohtani K (2008) Activation of the cyclin D2 and cdk6 genes through NF-kappaB is critical for cell-cycle progression induced by HTLV-I Tax. Oncogene 27(42):5635–5642PubMedGoogle Scholar
  37. 37.
    Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS Jr (1999) NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol 19(8):5785–5799PubMedGoogle Scholar
  38. 38.
    Ben JA, Bouraoui Y, Sallami S, Banasr A, Ben RN, Ouertani L, Nouira Y, Horchani A, Oueslati R (2010) Co-expression and impact of prostate specific membrane antigen and prostate specific antigen in prostatic pathologies. J Exp Clin Cancer Res 29:171Google Scholar
  39. 39.
    Holcomb B, Yip-Schneider M, Schmidt CM (2008) The role of nuclear factor kappaB in pancreatic cancer and the clinical applications of targeted therapy. Pancreas 36(3):225–235PubMedGoogle Scholar
  40. 40.
    Maier HJ, Schmidt-Strassburger U, Huber MA, Wiedemann EM, Beug H, Wirth T (2010) NF-kappaB promotes epithelial-mesenchymal transition, migration and invasion of pancreatic carcinoma cells. Cancer Lett 295(2):214–228PubMedGoogle Scholar
  41. 41.
    Jin RJ, Lho Y, Connelly L, Wang Y, Yu X, Saint JL, Case TC, Ellwood-Yen K, Sawyers CL, Bhowmick NA, Blackwell TS, Yull FE, Matusik RJ (2008) The nuclear factor-kappaB pathway controls the progression of prostate cancer to androgen-independent growth. Cancer Res 68(16):6762–6769PubMedGoogle Scholar
  42. 42.
    Luo JL, Tan W, Ricono JM, Korchynskyi O, Zhang M, Gonias SL, Cheresh DA, Karin M (2007) Nuclear cytokine-activated IKKalpha controls prostate cancer metastasis by repressing Maspin. Nature 446(7136):690–694PubMedGoogle Scholar
  43. 43.
    Dan HC, Adli M, Baldwin AS (2007) Regulation of mammalian target of rapamycin activity in PTEN-inactive prostate cancer cells by I kappa B kinase alpha. Cancer Res 67(13):6263–6269PubMedGoogle Scholar
  44. 44.
    Supakar PC, Jung MH, Song CS, Chatterjee B, Roy AK (1995) Nuclear factor kappa B functions as a negative regulator for the rat androgen receptor gene and NF-kappa B activity increases during the age-dependent desensitization of the liver. J Biol Chem 270(2):837–842PubMedGoogle Scholar
  45. 45.
    Delfino FJ, Boustead JN, Fix C, Walker WH (2003) NF-kappaB and TNF-alpha stimulate androgen receptor expression in Sertoli cells. Mol Cell Endocrinol 201(1–2):1–12PubMedGoogle Scholar
  46. 46.
    Wang D, Montgomery RB, Schmidt LJ, Mostaghel EA, Huang H, Nelson PS, Tindall DJ (2009) Reduced tumor necrosis factor receptor-associated death domain expression is associated with prostate cancer progression. Cancer Res 69(24):9448–9456PubMedGoogle Scholar
  47. 47.
    De BK, Vanden BW, Haegeman G (2006) Cross-talk between nuclear receptors and nuclear factor kappaB. Oncogene 25(51):6868–6886Google Scholar
  48. 48.
    Palvimo JJ, Reinikainen P, Ikonen T, Kallio PJ, Moilanen A, Janne OA (1996) Mutual transcriptional interference between RelA and androgen receptor. J Biol Chem 271(39):24151–24156PubMedGoogle Scholar
  49. 49.
    Nelius T, Filleur S, Yemelyanov A, Budunova I, Shroff E, Mirochnik Y, Aurora A, Veliceasa D, Xiao W, Wang Z, Volpert OV (2007) Androgen receptor targets NFkappaB and TSP1 to suppress prostate tumor growth in vivo. Int J Cancer 121(5):999–1008PubMedGoogle Scholar
  50. 50.
    Nadiminty N, Chun JY, Lou W, Lin X, Gao AC (2008) NF-kappaB2/p52 enhances androgen-independent growth of human LNCaP cells via protection from apoptotic cell death and cell cycle arrest induced by androgen-deprivation. Prostate 68(16):1725–1733PubMedGoogle Scholar
  51. 51.
    Nadiminty N, Lou W, Sun M, Chen J, Yue J, Kung HJ, Evans CP, Zhou Q, Gao AC (2010) Aberrant activation of the androgen receptor by NF-kappaB2/p52 in prostate cancer cells. Cancer Res 70(8):3309–3319PubMedGoogle Scholar
  52. 52.
    Nadiminty N, Lou W, Lee SO, Lin X, Trump DL, Gao AC (2006) Stat3 activation of NF-{kappa}B p100 processing involves CBP/p300-mediated acetylation. Proc Natl Acad Sci U S A 103(19):7264–7269PubMedGoogle Scholar
  53. 53.
    Lessard L, Saad F, Le PC, Diallo JS, Peant B, Delvoye N, Mes-Masson AM (2007) NF-kappaB2 processing and p52 nuclear accumulation after androgenic stimulation of LNCaP prostate cancer cells. Cell Signal 19(5):1093–1100PubMedGoogle Scholar
  54. 54.
    Heemers HV, Tindall DJ (2007) Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev 28(7):778–808PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Garima Jain
    • 1
  • Marcus V. Cronauer
    • 2
  • Mark Schrader
    • 2
  • Peter Möller
    • 1
  • Ralf B. Marienfeld
    • 1
  1. 1.Institute of PathologyUniversity of UlmUlmGermany
  2. 2.Department of UrologyUniversity of UlmUlmGermany

Personalised recommendations