World Journal of Urology

, Volume 31, Issue 2, pp 371–376 | Cite as

Hemodynamic effects of orally administered delta-ALA during radical prostatectomy

  • Volker EichhornEmail author
  • Alexander Maerz
  • Georg Salomon
  • Irmgard F. Blanc
  • Daniel A. Reuter
  • Alwin E. Goetz
Original Article



We investigated hemodynamics in patients receiving delta-Aminolevulinic acid (delta-ALA) to visualize tumor margins prior to radical retro pubic prostatectomy.


Twenty patients undergoing elective open radical retro pubic prostatectomy (RRP).


Cohort observational study. Ten patients receiving 20 mg/kg of delta-ALA orally prior to surgery (delta-ALA) and 10 patients undergoing RRP without the application of delta-ALA served as a retrospectively matched cohort (CONTROL).


Changes in heart rate (HR), mean arterial blood pressure (MAP), and functional hemodynamic parameters were assessed by electrocardiogram, non-invasive and invasive blood pressure monitoring plus transcardiopulmonary thermodilution.


Patients of both groups did not differ in means of age, body mass index, or ASA classification. During surgery, HR and MAP did not differ significantly between both groups. Also, the amount of IV crystalloids and colloids did not differ significantly. In contrast, the amount of vasopressor necessary to maintain MAP within the target range of 70–90 mmHg was significantly higher in delta-ALA when compared to CONTROL (0.08 ± 0.04 μg/kg/min (delta-ALA) vs. 0.03 ± 0.02 μg/kg/min (CONTROL); P < 0.01). Immediately after surgery, patients of delta-ALA showed a significantly higher heart rate (82 ± 18 min−1 vs. 67 ± 9 min−1; P < 0.05) compared to patients of CONTROL. Cardiac index, global end-diastolic volume index, and extravascular lung water index were significantly higher after surgery, when compared to baseline values (P < 0.05).


Orally administered delta-ALA prior to open radical prostatectomy induces hemodynamic instability in the perioperative period requiring vasopressor support. Further, an increase of extravascular lung water points toward an increased vascular permeability induced by delta-ALA.


delta-Aminolevulinic acid Hemodynamics Vascular tone Preload Transcardiopulmonary thermodilution Extravascular lung water 


Conflict of interest

All possible conflicts of interest are hereby disclosed from all authors.


  1. 1.
    Dailey HA, Smith A (1984) Differential interaction of porphyrins used in photoradiation therapy with ferrochelatase. Biochem J 223:441–445PubMedGoogle Scholar
  2. 2.
    Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401PubMedCrossRefGoogle Scholar
  3. 3.
    Hungerhuber E, Stepp H, Kriegmair M, Stief C, Hofstetter A, Hartmann A et al (2007) Seven years’ experience with 5-aminolevulinic acid in detection of transitional cell carcinoma of the bladder. Urology 69:260–264PubMedCrossRefGoogle Scholar
  4. 4.
    Messmann H, Endlicher E, Freunek G, Rummele P, Scholmerich J, Knuchel R (2003) Fluorescence endoscopy for the detection of low and high grade dysplasia in ulcerative colitis using systemic or local 5-aminolaevulinic acid sensitisation. Gut 52:1003–1007PubMedCrossRefGoogle Scholar
  5. 5.
    Endlicher E, Knuechel R, Hauser T, Szeimies RM, Scholmerich J, Messmann H (2001) Endoscopic fluorescence detection of low and high grade dysplasia in Barrett’s oesophagus using systemic or local 5-aminolaevulinic acid sensitization. Gut 48:314–319PubMedCrossRefGoogle Scholar
  6. 6.
    Herman MA, Webber J, Fromm D, Kessel D (1998) Hemodynamic effects of 5-aminolevulinic acid in humans. J Photochem Photobiol B 43:61–65PubMedCrossRefGoogle Scholar
  7. 7.
    Adam C, Salomon G, Walther S et al (2009) Photodynamic diagnosis using 5-aminolevulinic acid for the detection of positive surgical margins during radical prostatectomy in patients with carcinoma of the prostate: a multicentre, prospective, phase 2 trial of a diagnostic procedure. Eur Urol 55:1281–1288PubMedCrossRefGoogle Scholar
  8. 8.
    Kubitz JC, Annecke T, Forkl S et al (2007) Validation of pulse contour derived stroke volume variation during modifications of cardiac afterload. Br J Anaesth 98:591–597PubMedCrossRefGoogle Scholar
  9. 9.
    Reuter DA, Goetz AE (2005) Measurement of cardiac output. Anaesthesist 54:1135–1151PubMedCrossRefGoogle Scholar
  10. 10.
    Felbinger TW, Reuter DA, Eltzschig HK, Bayerlein J, Goetz AE (2005) Cardiac index measurements during rapid preload changes: a comparison of pulmonary artery thermodilution with arterial pulse contour analysis. J Clin Anesth 17:241–248PubMedCrossRefGoogle Scholar
  11. 11.
    Lahner D, Kabon B, Marschalek C et al (2009) Evaluation of stroke volume variation obtained by arterial pulse contour analysis to predict fluid responsiveness intraoperatively. Br J Anaesth 103:346–351PubMedCrossRefGoogle Scholar
  12. 12.
    Schostak M, Matischak K, Schafer M et al (2005) New concept minimizes bleeding in radical retropubic prostatectomy. Urologe A 44:1332–1336PubMedCrossRefGoogle Scholar
  13. 13.
    Reuter DA, Goetz AE, Peter K (2003) Assessment of volume responsiveness in mechanically ventilated patients. Anaesthesist 52:1005–1007PubMedCrossRefGoogle Scholar
  14. 14.
    Zaak D, Sroka R, Khoder W et al (2008) Photodynamic diagnosis of prostate cancer using 5-aminolevulinic acid–first clinical experiences. Urology 72:345–348PubMedCrossRefGoogle Scholar
  15. 15.
    Hoda MR, Popken G (2009) Surgical outcomes of fluorescence-guided laparoscopic partial nephrectomy using 5-aminolevulinic acid-induced protoporphyrin IX. J Surg Res 154:220–225PubMedCrossRefGoogle Scholar
  16. 16.
    Ganzer R, Blana A, Denzinger S et al (2009) Intraoperative photodynamic evaluation of surgical margins during endoscopic extraperitoneal radical prostatectomy with the use of 5-aminolevulinic acid. J Endourol 23:1387–1394PubMedCrossRefGoogle Scholar
  17. 17.
    Waidelich R, Stepp H, Baumgartner R, Weninger E, Hofstetter A, Kriegmair M (2001) Clinical experience with 5-aminolevulinic acid and photodynamic therapy for refractory superficial bladder cancer. J Urol 165:1904–1907PubMedCrossRefGoogle Scholar
  18. 18.
    Jenkins MP, Buonaccorsi G, MacRobert A, Bishop CC, Bown SG, McEwan JR (1998) Intra-arterial photodynamic therapy using 5-ALA in a swine model. Eur J Vasc Endovasc Surg 16:284–291PubMedCrossRefGoogle Scholar
  19. 19.
    Mingone CJ, Gupte SA, Chow JL, Ahmad M, Abraham NG, Wolin MS (2006) Protoporphyrin IX generation from delta-aminolevulinic acid elicits pulmonary artery relaxation and soluble guanylate cyclase activation. Am J Physiol Lung Cell Mol Physiol 291:337–344CrossRefGoogle Scholar
  20. 20.
    Archer SL, Huang JM, Hampl V, Nelson DP, Shultz PJ, Weir EK (1994) Nitric oxide and controlMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by controlMP-dependent protein kinase. Proc Natl Acad Sci U S A 91:7583–7587PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Volker Eichhorn
    • 1
    Email author
  • Alexander Maerz
    • 1
  • Georg Salomon
    • 2
  • Irmgard F. Blanc
    • 1
  • Daniel A. Reuter
    • 1
  • Alwin E. Goetz
    • 1
  1. 1.Department of Anesthesiology, Center of Anesthesiology and Intensive Care MedicineUniversity Medical Center Hamburg-Eppendorf, Hamburg Eppendorf University HospitalHamburgGermany
  2. 2.Martiniklinik—Prostate Cancer Center Hamburg EppendorfHamburgGermany

Personalised recommendations