Advertisement

World Journal of Urology

, Volume 28, Issue 4, pp 479–485 | Cite as

A rat model of intravesical delivery of small interfering RNA for studying urinary carcinoma

  • Carl-Jørgen Arum
  • Yosuke Kodama
  • Natale Rolim
  • Marius Widerøe
  • Endre Anderssen
  • Trond Viset
  • Marit Otterlei
  • Steinar Lundgren
  • Duan Chen
  • Chun-Mei ZhaoEmail author
Original Article

Abstract

Purpose

siRNA has been used successfully in loss-of-function studies in vitro, but neither in vivo nor in clinical applications. The aims of the present study were (1) to establish rat models for in vivo delivery of siRNA to bladder cancer, and (2) to identify potential targets for siRNA.

Methods

The rat models of human urinary carcinoma and rat urinary carcinoma cell line (AY-27) were induced by tobacco-related chemical carcinogens, either N-[4-(5-nitro-2-furyl)-2-thiazolyl]formamide (FANFT) or N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN). A syngeneic orthotopic bladder cancer model was established by inoculation of AY-27 cells. A fluorescence-labelled negative control siRNA with cationic and neutral liposomes was tested both in vitro (AY-27 cells) and in vivo.

Results

siRNA was highly accumulated in the cancer cells as early as 12 h and remained at least for 24 h after a single dose in vivo. Numerous CD3+ T cells appeared mainly in the periphery area of the tumour. Bioinformatics analysis revealed a list of concordantly highly expressed genes, possible siRNA targets, in the animal models as well as human urinary carcinoma. Literature search on siRNA and bladder cancer provided a list of genes used as siRNA targets.

Conclusion

The methodology and data presented in the present study provide a number of opportunities for basic research on urinary carcinogenesis and for translational research on evaluation of siRNA therapeutic strategies for urinary carcinoma in the native organ, where hormonal, neural and immunological processes more closely resemble the clinical situation.

Keywords

Bladder cancer Rat models siRNA delivery siRNA targets 

Notes

Acknowledgments

This study was supported by grants from the Joint Programme of Medical Faculty of NTNU and St. Olavs’ Hospital, St. Olavs’ Hospital Foundation for Cancer Research, Norwegian Functional Genomics (Midt-Norge) and Merck Sharp and Dohme Norge AS. The authors thank Dr. Pål Sætrom at the Department of Cancer Research and Molecular Medicine of NTNU for the valuable discussion.

Conflict of interest statement

None.

References

  1. 1.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811. doi: 10.1038/35888 CrossRefPubMedGoogle Scholar
  2. 2.
    Fire AZ (2007) Gene silencing by double-stranded RNA (Nobel lecture). Angew Chem Int Ed Engl 46(37):6966–6984. doi: 10.1002/anie.200701979 CrossRefPubMedGoogle Scholar
  3. 3.
    Reischl D, Zimmer A (2009) Drug delivery of siRNA therapeutics: potentials and limits of nanosystems. Nanomedicine 5(1):8–20. doi: 10.1016/j.nano.2008.06.001 PubMedGoogle Scholar
  4. 4.
    Bantounas I, Phylactou LA, Uney JB (2004) RNA interference and the use of small interfering RNA to study gene function in mammalian systems. J Mol Endocrinol 33(3):545–557. doi: 10.1677/jme.1.01582 CrossRefPubMedGoogle Scholar
  5. 5.
    Gondi CS, Rao JS (2009) Concepts in in vivo siRNA delivery for cancer therapy. J Cell Physiol 220(2):285–291. doi: 10.1002/jcp.21790 CrossRefPubMedGoogle Scholar
  6. 6.
    Akhtar S, Benter IF (2007) Nonviral delivery of synthetic siRNAs in vivo. J Clin Invest 117(12):3623–3632. doi: 10.1172/JCI33494 CrossRefPubMedGoogle Scholar
  7. 7.
    Oh YK, Park TG (2009) siRNA delivery systems for cancer treatment. Adv Drug Deliv Rev 61(10):850–862. doi: 10.1016/j.addr.2009.04.018 CrossRefPubMedGoogle Scholar
  8. 8.
    Parkin DM (2008) The global burden of urinary bladder cancer. Scand J Urol Nephrol Suppl (218):12–20Google Scholar
  9. 9.
    Bryan GT (1977) The pathogenesis of experimental bladder cancer. Cancer Res 37(8):2813–2816PubMedGoogle Scholar
  10. 10.
    Williams PD, Lee JK, Theodorescu D (2008) Molecular credentialing of rodent bladder carcinogenesis models. Neoplasia 10(8):838–846PubMedGoogle Scholar
  11. 11.
    Arum CJ, Anderssen E, Tommeras K, Lundgren S, Chen D, Zhao CM (2010) Gene expression profiling and pathway analysis of superficial bladder cancer in rats. Urology 75(3):742–749. doi: 10.1016/j.urology.2009.03.008 Google Scholar
  12. 12.
    Reis LO, Pereira TC, Favaro WJ, Cagnon VH, Lopes-Cendes I, Ferreira U (2009) Experimental animal model and RNA interference: a promising association for bladder cancer research. World J Urol 27(3):353–361. doi: 10.1007/s00345-009-0374-4 CrossRefPubMedGoogle Scholar
  13. 13.
    Ito N, Fukushima S, Shirai T, Nakanishi K, Hasegawa R, Imaida K (1983) Modifying factors in urinary bladder carcinogenesis. Environ Health Perspect 49:217–222CrossRefPubMedGoogle Scholar
  14. 14.
    King EB, Vanderlaan M, Jensen RH, Kromhout LK, Hoffman JW (1984) Morphologic changes in rat urothelial cells during carcinogenesis: I. Histologic and cytologic changes. Cytometry 5(5):447–453. doi: 10.1002/cyto.990050503 CrossRefPubMedGoogle Scholar
  15. 15.
    Xiao Z, McCallum TJ, Brown KM, Miller GG, Halls SB, Parney I, Moore RB (1999) Characterization of a novel transplantable orthotopic rat bladder transitional cell tumour model. Br J Cancer 81(4):638–646. doi: 10.1038/sj.bjc.6690741 CrossRefPubMedGoogle Scholar
  16. 16.
    Mengual L, Burset M, Ars E, Lozano JJ, Villavicencio H, Ribal MJ, Alcaraz A (2009) DNA microarray expression profiling of bladder cancer allows identification of noninvasive diagnostic markers. J Urol 182(2):741–748. doi: 10.1016/j.juro.2009.03.084 CrossRefPubMedGoogle Scholar
  17. 17.
    Yao R, Yi Y, Clinton GJ, Lubetz RA, You M (2007) Gene expression profiling of chemically induced rat bladder tumors. Neoplasia 9(3):207–221. doi: 10.1593/neo.06814 CrossRefPubMedGoogle Scholar
  18. 18.
    Qing J, Du X, Chen Y, Chan P, Li H, Wu P, Marsters S, Stawicki S, Tien J, Totpal K, Ross S, Stinson S, Dornan D, French D, Wang QR, Stephan JP, Wu Y, Wiesmann C, Ashkenazi A (2009) Antibody-based targeting of FGFR3 in bladder carcinoma and t(4;14)-positive multiple myeloma in mice. J Clin Invest 119(5):1216–1229. doi: 10.1172/JCI38017 CrossRefPubMedGoogle Scholar
  19. 19.
    Sweeney P, Karashima T, Ishikura H, Wiehle S, Yamashita M, Benedict WF, Cristiano RJ, Dinney CP (2003) Efficient therapeutic gene delivery after systemic administration of a novel polyethylenimine/DNA vector in an orthotopic bladder cancer model. Cancer Res 63(14):4017–4020PubMedGoogle Scholar
  20. 20.
    Gao S, Dagnaes-Hansen F, Nielsen EJ, Wengel J, Besenbacher F, Howard KA, Kjems J (2009) The effect of chemical modification and nanoparticle formulation on stability and biodistribution of siRNA in mice. Mol Ther 17(7):1225–1233. doi: 10.1038/mt.2009.91 CrossRefPubMedGoogle Scholar
  21. 21.
    Nogawa M, Yuasa T, Kimura S, Tanaka M, Kuroda J, Sato K, Yokota A, Segawa H, Toda Y, Kageyama S, Yoshiki T, Okada Y, Maekawa T (2005) Intravesical administration of small interfering RNA targeting PLK-1 successfully prevents the growth of bladder cancer. J Clin Invest 115(4):978–985. doi: 10.1172/JCI23043 PubMedGoogle Scholar
  22. 22.
    Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S, Noronha A, Manoharan M, Akira S, de Fougerolles A, Endres S, Hartmann G (2005) Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 11(3):263–270. doi: 10.1038/nm1191 CrossRefPubMedGoogle Scholar
  23. 23.
    Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I (2005) Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 23(4):457–462. doi: 10.1038/nbt1081 CrossRefPubMedGoogle Scholar
  24. 24.
    Sioud M (2005) Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol 348(5):1079–1090. doi: 10.1016/j.jmb.2005.03.013 CrossRefPubMedGoogle Scholar
  25. 25.
    Robbins M, Judge A, MacLachlan I (2009) siRNA and innate immunity. Oligonucleotides 19(2):89–101. doi: 10.1089/oli.2009.0180 CrossRefPubMedGoogle Scholar
  26. 26.
    Herr HW, Morales A (2008) History of bacillus Calmette–Guerin and bladder cancer: an immunotherapy success story. J Urol 179(1):53–56. doi: 10.1016/j.juro.2007.08.122 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Carl-Jørgen Arum
    • 1
    • 3
  • Yosuke Kodama
    • 1
  • Natale Rolim
    • 2
  • Marius Widerøe
    • 2
  • Endre Anderssen
    • 1
  • Trond Viset
    • 4
  • Marit Otterlei
    • 1
  • Steinar Lundgren
    • 2
    • 5
  • Duan Chen
    • 1
  • Chun-Mei Zhao
    • 1
    Email author
  1. 1.Department of Cancer Research and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Department of Circulation and Medical ImagingNorwegian University of Science and TechnologyTrondheimNorway
  3. 3.Department of SurgerySt. Olav’s University HospitalTrondheimNorway
  4. 4.Department of Pathology and GeneticsSt. Olav’s University HospitalTrondheimNorway
  5. 5.Department of OncologySt. Olav’s University HospitalTrondheimNorway

Personalised recommendations