World Journal of Urology

, 25:445

Renal transplant rejection markers

Topic Paper

Abstract

Acute rejection is one of the key factors which determine long-term graft function and survival in renal transplant patients. Timely detection and treatment of rejection is therefore, an important goal in the post-transplant surveillance. The standard care with serum creatinine measurements and biopsy upon allograft dysfunction implies that acute rejection is detected in an advanced stage. Therefore, non-invasive monitoring for acute rejection by markers in blood and urine has been tried over the past decades. This review describes the requirements that should be met by non-invasive markers. The experience with single biomarkers and with newer approaches—mRNA expression analysis, metabolomics, and proteomics—will be discussed, including future directions of necessary research.

Keywords

Kidney Transplantation Biomarker Acute rejection Proteomics 

References

  1. 1.
    Meier-Kriesche HU, Schold JD, Kaplan B (2004) Long-term renal allograft survival: have we made significant progress or is it time to rethink our analytic and therapeutic strategies? Am J Transplant 4:1289–1295PubMedCrossRefGoogle Scholar
  2. 2.
    Kreis HA, Ponticelli C (2001) Causes of late renal allograft loss: chronic allograft dysfunction, death, and other factors. Transplantation 71:SS5–SS9PubMedGoogle Scholar
  3. 3.
    Solez K, Colvin RB, Racusen LC, Sis B, Halloran PF, Birk PE, Campbell PM, Cascalho M, Collins AB, Demetris AJ, Drachenberg CB, Gibson IW, Grimm PC, Haas M, Lerut E, Liapis H, Mannon RB, Marcus PB, Mengel M, Mihatsch MJ, Nankivell BJ, Nickeleit V, Papadimitriou JC, Platt JL, Randhawa P, Roberts I, Salinas-Madriga L, Salomon DR, Seron D, Sheaff M, Weening JJ (2007) Banff ‘05 Meeting Report: differential diagnosis of chronic allograft injury and elimination of chronic allograft nephropathy (‘CAN’). Am J Transplant 7:518–526PubMedCrossRefGoogle Scholar
  4. 4.
    Rush D, Nickerson P, Gough J, McKenna R, Grimm P, Cheang M, Trpkov K, Solez K, Jeffery J (1998) Beneficial effects of treatment of early subclinical rejection: a randomized study. J Am Soc Nephrol 9:2129–2134PubMedGoogle Scholar
  5. 5.
    Moreso F, Ibernon M, Goma M, Carrera M, Fulladosa X, Hueso M, Gil-Vernet S, Cruzado JM, Torras J, Grinyo JM, Seron D (2006) Subclinical rejection associated with chronic allograft nephropathy in protocol biopsies as a risk factor for late graft loss. Am J Transplant 6:747–752PubMedCrossRefGoogle Scholar
  6. 6.
    Massy ZA, Guijarro C, Kasiske BL (1995) Clinical predictors of chronic renal allograft rejection. Kidney Int Suppl 52:S85–88PubMedGoogle Scholar
  7. 7.
    Sebekova K, Feber J, Carpenter B, Shaw L, Karnauchow T, Diaz-Mitoma F, Filler G (2005) Tissue viral DNA is associated with chronic allograft nephropathy. Pediatr Transplant 9:598–603PubMedCrossRefGoogle Scholar
  8. 8.
    Racusen LC, Solez K, Colvin RB, Bonsib SM, Castro MC, Cavallo T, Croker BP, Demetris AJ, Drachenberg CB, Fogo AB, Furness P, Gaber LW, Gibson IW, Glotz D, Goldberg JC, Grande J, Halloran PF, Hansen HE, Hartley B, Hayry PJ, Hill CM, Hoffman EO, Hunsicker LG, Lindblad AS, Yamaguchi Y et al (1999) The Banff 97 working classification of renal allograft pathology. Kidney Int 55:713–723PubMedCrossRefGoogle Scholar
  9. 9.
    Moll S, Pascual M (2005) Humoral rejection of organ allografts. Am J Transplant 5:2611–2618PubMedCrossRefGoogle Scholar
  10. 10.
    Mengel M, Gwinner W, Schwarz A, Bajeski R, Franz I, Brocker V, Becker T, Neipp M, Klempnauer J, Haller H, Kreipe H (2007) Infiltrates in protocol biopsies from renal allografts. Am J Transplant 7:356–365PubMedCrossRefGoogle Scholar
  11. 11.
    Kamoun M (2001) Cellular and molecular parameters in human renal allograft rejection. Clin Biochem 34:29–34PubMedCrossRefGoogle Scholar
  12. 12.
    Kayler LK, Lakkis FG, Morgan C, Basu A, Blisard D, Tan HP, McCauley J, Wu C, Shapiro R, Randhawa PS (2007) Acute cellular rejection with CD20-positive lymphoid clusters in kidney transplant patients following lymphocyte depletion. Am J Transplant 7:949–954PubMedCrossRefGoogle Scholar
  13. 13.
    Satterwhite T, Chua MS, Hsieh SC, Chang S, Scandling J, Salvatierra O, Sarwal MM (2003) Increased expression of cytotoxic effector molecules: different interpretations for steroid-based and steroid-free immunosuppression. Pediatr Transplant 7:53–58PubMedCrossRefGoogle Scholar
  14. 14.
    Carlson IH (1992) New markers in serum for lymphocyte activation for predicting allograft rejection. Neopterin and soluble interleukin-2 receptor. Clin Lab Med 12:99–111PubMedGoogle Scholar
  15. 15.
    Fischer T, Filimonow S, Dieckhofer J, Slowinski T, Muhler M, Lembcke A, Budde K, Neumayer HH, Ebeling V, Giessing M, Thomas A, Morgera S (2006) Improved diagnosis of early kidney allograft dysfunction by ultrasound with echo enhancer—a new method for the diagnosis of renal perfusion. Nephrol Dial Transplant 21:2921–2929PubMedCrossRefGoogle Scholar
  16. 16.
    Morath C, Ritz E, Zeier M (2003) Protocol biopsy: what is the rationale and what is the evidence? Nephrol Dial Transplant 18:644–647PubMedCrossRefGoogle Scholar
  17. 17.
    Gough J, Rush D, Jeffery J, Nickerson P, McKenna R, Solez K, Trpkov K (2002) Reproducibility of the Banff schema in reporting protocol biopsies of stable renal allografts. Nephrol Dial Transplant 17:1081–1084PubMedCrossRefGoogle Scholar
  18. 18.
    Schwarz A, Gwinner W, Hiss M, Radermacher J, Mengel M, Haller H (2005) Safety and adequacy of renal transplant protocol biopsies. Am J Transplant 5:1992–1996PubMedCrossRefGoogle Scholar
  19. 19.
    Karpinski M, Rush D, Jeffery J, Pochinco D, Milley D, Nickerson P (2003) Heightened peripheral blood lymphocyte CD69 expression is neither sensitive nor specific as a noninvasive diagnostic test for renal allograft rejection. J Am Soc Nephrol 14:226–233PubMedCrossRefGoogle Scholar
  20. 20.
    Sarwal M, Chua MS, Kambham N, Hsieh SC, Satterwhite T, Masek M, Salvatierra O Jr (2003) Molecular heterogeneity in acute renal allograft rejection identified by DNA microarray profiling. N Engl J Med 349:125–138PubMedCrossRefGoogle Scholar
  21. 21.
    Dugre FJ, Gaudreau S, Belles-Isles M, Houde I, Roy R (2000) Cytokine and cytotoxic molecule gene expression determined in peripheral blood mononuclear cells in the diagnosis of acute renal rejection. Transplantation 70:1074–1080PubMedCrossRefGoogle Scholar
  22. 22.
    Sabek O, Dorak MT, Kotb M, Gaber AO, Gaber L (2002) Quantitative detection of T-cell activation markers by real-time PCR in renal transplant rejection and correlation with histopathologic evaluation. Transplantation 74:701–707PubMedCrossRefGoogle Scholar
  23. 23.
    Vasconcellos LM, Schachter AD, Zheng XX, Vasconcellos LH, Shapiro M, Harmon WE, Strom TB (1998) Cytotoxic lymphocyte gene expression in peripheral blood leukocytes correlates with rejecting renal allografts. Transplantation 66:562–566PubMedCrossRefGoogle Scholar
  24. 24.
    Shoker A, George D, Yang H, Baltzan M (2000) Heightened CD40 ligand gene expression in peripheral CD4+ T cells from patients with kidney allograft rejection. Transplantation 70:497–505PubMedCrossRefGoogle Scholar
  25. 25.
    Posselt AM, Vincenti F, Bedolli M, Lantz M, Roberts JP, Hirose R (2003) CD69 expression on peripheral CD8 T cells correlates with acute rejection in renal transplant recipients. Transplantation 76:190–195PubMedCrossRefGoogle Scholar
  26. 26.
    Sridhar NR, Blanton M, Whitacre L, Balakrishnan K, First MR (1992) Flow cytometric evaluation of cytotoxic peripheral blood lymphocytes in acute renal graft rejection. J Am Soc Nephrol 3:1220–1226PubMedGoogle Scholar
  27. 27.
    Simon T, Opelz G, Wiesel M, Ott RC, Susal C (2003) Serial peripheral blood perforin and granzyme B gene expression measurements for prediction of acute rejection in kidney graft recipients. Am J Transplant 3:1121–1127PubMedCrossRefGoogle Scholar
  28. 28.
    Burkhardt K, Radespiel-Troger M, Rupprecht HD, Goppelt-Struebe M, Riess R, Renders L, Hauser IA, Kunzendorf U (2001) An increase in myeloid-related protein serum levels precedes acute renal allograft rejection. J Am Soc Nephrol 12:1947–1957PubMedGoogle Scholar
  29. 29.
    Gupta RK, Jain M, Sharma RK (2004) Serum and urinary interleukin-2 levels as predictors in acute renal allograft rejection. Indian J Med Res 119:24–27PubMedGoogle Scholar
  30. 30.
    Grebe SO, Mueller TF (2002) Immune monitoring in organ transplantation using neopterin. Curr Drug Metab 3:189–202PubMedCrossRefGoogle Scholar
  31. 31.
    Pelzl S, Opelz G, Daniel V, Wiesel M, Susal C (2003) Evaluation of posttransplantation soluble CD30 for diagnosis of acute renal allograft rejection. Transplantation 75:421–423PubMedCrossRefGoogle Scholar
  32. 32.
    Rouschop KM, Roelofs JJ, Sylva M, Rowshani AT, Ten Berge IJ, Weening JJ, Florquin S (2006) Renal expression of CD44 correlates with acute renal allograft rejection. Kidney Int 70:1127–1134PubMedCrossRefGoogle Scholar
  33. 33.
    Kutukculer N, Shenton BK, Clark K, Rigg KM, Forsythe JL, Kirby JA, Proud G, Taylor RM (1995) Renal allograft rejection: the temporal relationship and predictive value of plasma TNF (alpha and beta), IFN-gamma and soluble ICAM-1. Transpl Int 8:45–50PubMedCrossRefGoogle Scholar
  34. 34.
    Kutukculer N, Clark K, Rigg KM, Forsythe JL, Proud G, Taylor RM, Shenton BK (1995) The value of posttransplant monitoring of interleukin (IL)-2, IL-3, IL-4, IL-6, IL-8, and soluble CD23 in the plasma of renal allograft recipients. Transplantation 59:333–340PubMedCrossRefGoogle Scholar
  35. 35.
    Lebranchu Y, Kapahi P, al Najjar A, Sharobeem R, Valentin JF, Nivet H, Bagros P, Haskard D (1994) Soluble e-selectin, ICAM-1, and VCAM-1 levels in renal allograft recipients. Transplant Proc 26:1873–1874PubMedGoogle Scholar
  36. 36.
    Lederer SR, Friedrich N, Regenbogen C, Getto R, Toepfer M, Sitter T (2003) Non-invasive monitoring of renal transplant recipients: urinary excretion of soluble adhesion molecules and of the complement-split product C4d. Nephron Clin Pract 94:c19–26PubMedCrossRefGoogle Scholar
  37. 37.
    Hauser IA, Spiegler S, Kiss E, Gauer S, Sichler O, Scheuermann EH, Ackermann H, Pfeilschifter JM, Geiger H, Grone HJ, Radeke HH (2005) Prediction of acute renal allograft rejection by urinary monokine induced by IFN-gamma (MIG). J Am Soc Nephrol 16:1849–1858PubMedCrossRefGoogle Scholar
  38. 38.
    Hu H, Aizenstein BD, Puchalski A, Burmania JA, Hamawy MM, Knechtle SJ (2004) Elevation of CXCR3-binding chemokines in urine indicates acute renal-allograft dysfunction. Am J Transplant 4:432–437PubMedCrossRefGoogle Scholar
  39. 39.
    Li B, Hartono C, Ding R, Sharma VK, Ramaswamy R, Qian B, Serur D, Mouradian J, Schwartz JE, Suthanthiran M (2001) Noninvasive diagnosis of renal-allograft rejection by measurement of messenger RNA for perforin and granzyme B in urine. N Engl J Med 344:947–954PubMedCrossRefGoogle Scholar
  40. 40.
    Seiler M, Brabcova I, Viklicky O, Hribova P, Rosenberger C, Pratschke J, Lodererova A, Matz M, Schonemann C, Reinke P, Volk HD, Kotsch K (2007) Heightened expression of the cytotoxicity receptor NKG2D correlates with acute and chronic nephropathy after kidney transplantation. Am J Transplant 7:423–433PubMedCrossRefGoogle Scholar
  41. 41.
    Kotsch K, Mashreghi MF, Bold G, Tretow P, Beyer J, Matz M, Hoerstrup J, Pratschke J, Ding R, Suthanthiran M, Volk HD, Reinke P (2004) Enhanced granulysin mRNA expression in urinary sediment in early and delayed acute renal allograft rejection. Transplantation 77:1866–1875PubMedCrossRefGoogle Scholar
  42. 42.
    Matz M, Beyer J, Wunsch D, Mashreghi MF, Seiler M, Pratschke J, Babel N, Volk HD, Reinke P, Kotsch K (2006) Early post-transplant urinary IP-10 expression after kidney transplantation is predictive of short- and long-term graft function. Kidney Int 69:1683–1690PubMedCrossRefGoogle Scholar
  43. 43.
    Muthukumar T, Dadhania D, Ding R, Snopkowski C, Naqvi R, Lee JB, Hartono C, Li B, Sharma VK, Seshan SV, Kapur S, Hancock WW, Schwartz JE, Suthanthiran M (2005) Messenger RNA for FOXP3 in the urine of renal-allograft recipients. N Engl J Med 353:2342–2351PubMedCrossRefGoogle Scholar
  44. 44.
    Pefaur J, Trivino R, Navarrete C, Oberhauser E, Melys M, Morales I, Salinas P, Mocarquer A (2003) Clinical graft evolution of lymphocytes, polymorphonuclear cells, and antigen expression in tubular renal cells in the urine sediment of 20 renal allograft recipients. Transplant Proc 35:2500–2505PubMedCrossRefGoogle Scholar
  45. 45.
    Kyo M, Toki K, Nishimura K, Fukunishi T, Nagano S, Namba Y, Gudat F, Dalquen P, Mihatsch MJ (2002) Differential diagnosis of kidney transplant rejection and cyclosporin/tacrolimus nephropathy using urine cytology. Clin Transplant 16(Suppl 8):40–44PubMedCrossRefGoogle Scholar
  46. 46.
    Muthukumar T, Ding R, Dadhania D, Medeiros M, Li B, Sharma VK, Hartono C, Serur D, Seshan SV, Volk HD, Reinke P, Kapur S, Suthanthiran M (2003) Serine proteinase inhibitor-9, an endogenous blocker of granzyme B/perforin lytic pathway, is hyperexpressed during acute rejection of renal allografts. Transplantation 75:1565–1570PubMedCrossRefGoogle Scholar
  47. 47.
    Dadhania D, Muthukumar T, Ding R, Li B, Hartono C, Serur D, Seshan SV, Sharma VK, Kapur S, Suthanthiran M (2003) Molecular signatures of urinary cells distinguish acute rejection of renal allografts from urinary tract infection. Transplantation 75:1752–1754PubMedCrossRefGoogle Scholar
  48. 48.
    Ding R, Li B, Muthukumar T, Dadhania D, Medeiros M, Hartono C, Serur D, Seshan SV, Sharma VK, Kapur S, Suthanthiran M (2003) CD103 mRNA levels in urinary cells predict acute rejection of renal allografts. Transplantation 75:1307–1312PubMedCrossRefGoogle Scholar
  49. 49.
    Tatapudi RR, Muthukumar T, Dadhania D, Ding R, Li B, Sharma VK, Lozada-Pastorio E, Seetharamu N, Hartono C, Serur D, Seshan SV, Kapur S, Hancock WW, Suthanthiran M (2004) Noninvasive detection of renal allograft inflammation by measurements of mRNA for IP-10 and CXCR3 in urine. Kidney Int 65:2390–2397PubMedCrossRefGoogle Scholar
  50. 50.
    Hu M, Zhang GY, Walters G, Sartor M, Watson D, Knight JF, Alexander SI (2004) Matching T-cell receptors identified in renal biopsies and urine at the time of acute rejection in pediatric renal transplant patients. Am J Transplant 4:1859–1868PubMedCrossRefGoogle Scholar
  51. 51.
    Bock GH, Neu L, Long C, Patterson LT, Korb S, Gelpi J, Nelson DL (1994) An assessment of serum and urine soluble interleukin-2 receptor concentrations during renal transplant rejection. Am J Kidney Dis 23:421–426PubMedGoogle Scholar
  52. 52.
    Waiser J, Budde K, Katalinic A, Kuerzdorfer M, Riess R, Neumayer HH (1997) Interleukin-6 expression after renal transplantation. Nephrol Dial Transplant 12:753–759PubMedCrossRefGoogle Scholar
  53. 53.
    Budde K, Waiser J, Ceska M, Katalinic A, Kurzdorfer M, Neumayer HH (1997) Interleukin-8 expression in patients after renal transplantation. Am J Kidney Dis 29:871–880PubMedGoogle Scholar
  54. 54.
    Brown FG, Nikolic-Paterson DJ, Chadban SJ, Dowling J, Jose M, Metz CN, Bucala R, Atkins RC (2001) Urine macrophage migration inhibitory factor concentrations as a diagnostic tool in human renal allograft rejection. Transplantation 71:1777–1783PubMedCrossRefGoogle Scholar
  55. 55.
    Roberti I, Reisman L, Burrows L, Lieberman KV (1995) Urine cytology and urine flow cytometry in renal transplantation–a prospective double blind study. Transplantation 59:495–500PubMedGoogle Scholar
  56. 56.
    Roberti I, Reisman L (2001) Serial evaluation of cell surface markers for immune activation after acute renal allograft rejection by urine flow cytometry–correlation with clinical outcome. Transplantation 71:1317–1320PubMedCrossRefGoogle Scholar
  57. 57.
    Schaub S, Wilkins JA, Rush D, Nickerson P (2006) Developing a tool for noninvasive monitoring of renal allografts. Expert Rev Proteomics 3:497–509PubMedCrossRefGoogle Scholar
  58. 58.
    Woywodt A, Schroeder M, Mengel M, Schwarz A, Gwinner W, Haller H, Haubitz M (2003) Circulating endothelial cells are a novel marker of cyclosporine-induced endothelial damage. Hypertension 41:720–723PubMedCrossRefGoogle Scholar
  59. 59.
    Woywodt A, Schroeder M, Gwinner W, Mengel M, Jaeger M, Schwarz A, Haller H, Haubitz M (2003) Elevated numbers of circulating endothelial cells in renal transplant recipients. Transplantation 76:1–4PubMedCrossRefGoogle Scholar
  60. 60.
    Prischl F, Gremmel F, Schwabe M, Schindler J, Balcke P, Kopsa H, Pinter G, Schwarzmeier J, Zazgornik J (1989) Beta-2-microglobulin for differentiation between ciclosporin A nephrotoxicity and graft rejection in renal transplant recipients. Nephron 51:330–337PubMedCrossRefGoogle Scholar
  61. 61.
    Roxe DM, Siddiqui F, Santhanam S, del Greco F, Wolf J (1981) Rationale and application of beta-2-microglobulin measurements to detect acute transplant rejection. Nephron 27:260–264PubMedGoogle Scholar
  62. 62.
    Parikh CR, Jani A, Mishra J, Ma Q, Kelly C, Barasch J, Edelstein CL, Devarajan P (2006) Urine NGAL and IL-18 are predictive biomarkers for delayed graft function following kidney transplantation. Am J Transplant 6:1639–1645PubMedCrossRefGoogle Scholar
  63. 63.
    Roelofs JJ, Rowshani AT, van den Berg JG, Claessen N, Aten J, ten Berge IJ, Weening JJ, Florquin S (2003) Expression of urokinase plasminogen activator and its receptor during acute renal allograft rejection. Kidney Int 64:1845–1853PubMedCrossRefGoogle Scholar
  64. 64.
    Flechner SM, Kurian SM, Head SR, Sharp SM, Whisenant TC, Zhang J, Chismar JD, Horvath S, Mondala T, Gilmartin T, Cook DJ, Kay SA, Walker JR, Salomon DR (2004) Kidney transplant rejection and tissue injury by gene profiling of biopsies and peripheral blood lymphocytes. Am J Transplant 4:1475–1489PubMedCrossRefGoogle Scholar
  65. 65.
    Wishart DS (2006) Metabolomics in monitoring kidney transplants. Curr Opin Nephrol Hypertens 15:637–642PubMedCrossRefGoogle Scholar
  66. 66.
    Yates JR 3rd (1998) Mass spectrometry and the age of the proteome. J Mass Spectrom 33:1–19PubMedCrossRefGoogle Scholar
  67. 67.
    Gwinner W, Rohde F, Mischak H (2006) Proteome analysis as a non-invasive tool in transplant monitoring. Clin Lab 30:6–10Google Scholar
  68. 68.
    O’Riordan E, Orlova TN, Mei JJ, Butt K, Chander PM, Rahman S, Mya M, Hu R, Momin J, Eng EW, Hampel DJ, Hartman B, Kretzler M, Delaney V, Goligorsky MS (2004) Bioinformatic analysis of the urine proteome of acute allograft rejection. J Am Soc Nephrol 15:3240–3248PubMedCrossRefGoogle Scholar
  69. 69.
    Clarke W, Silverman BC, Zhang Z, Chan DW, Klein AS, Molmenti EP (2003) Characterization of renal allograft rejection by urinary proteomic analysis. Ann Surg 237:660–664 (discussion 664–665)PubMedCrossRefGoogle Scholar
  70. 70.
    Schaub S, Rush D, Wilkins J, Gibson IW, Weiler T, Sangster K, Nicolle L, Karpinski M, Jeffery J, Nickerson P (2004) Proteomic-based detection of urine proteins associated with acute renal allograft rejection. J Am Soc Nephrol 15:219–227PubMedCrossRefGoogle Scholar
  71. 71.
    Schaub S, Wilkins JA, Antonovici M, Krokhin O, Weiler T, Rush D, Nickerson P (2005) Proteomic-based identification of cleaved urinary beta2-microglobulin as a potential marker for acute tubular injury in renal allografts. Am J Transplant 5:729–738PubMedCrossRefGoogle Scholar
  72. 72.
    Wittke S, Haubitz M, Walden M, Rohde F, Schwarz A, Mengel M, Mischak H, Haller H, Gwinner W (2005) Detection of acute tubulointerstitial rejection by proteomic analysis of urinary samples in renal transplant recipients. Am J Transplant 5:2479–2488PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Internal Medicine, Division of NephrologyMedical School HannoverHannoverGermany

Personalised recommendations