World Journal of Urology

, Volume 25, Issue 4, pp 341–349 | Cite as

Positron emission tomography (PET) in the urooncological evaluation of the small pelvis

  • S. Machtens
  • J. Serth
  • A. Meyer
  • C. Kleinhorst
  • K.-J. Ommer
  • U. Herbst
  • M. Kieruij
  • A. R. Boerner
Topic Paper


Positron emission tomography (PET) with the use of (18F)2-fluoro-d-2-desoxyglucose (FDG) has been investigated to be a highly sensitive and specific imaging modality in the diagnostic of primary and recurrent tumors and in the control of therapies in numerous non-urologic cancers. The aim of this review is to validate the significance of PET as a diagnostic tool in malignant urological tumors of the small pelvis. A systematic review of the current literature concerning the role of PET for malignant prostate, testicular and bladder tumors was carried out. The data indicate no additional role for PET in comparison with conventional imaging in tumor detection and local staging for prostate, bladder or testicular cancer. Tumor recurrence in prostate cancer seems to be more effectively identified with acetate and choline than with FDG, but this effect is more pronounced with higher PSA values. The value of PET in the identification of metastatic disease in either tumor entity can not be finally outlined as the clinical data are partly missing, controversial or in the process of evaluation. FDG-PET can be regarded as accepted imaging modality in the restaging of seminomatous germ cell tumors after chemotherapy.


PET Prostate cancer Testicular cancer Bladder cancer FDG Choline Acetate Methionine 


  1. 1.
    Ak I, Stokkel MP, Pauwels EK (2000) Positron emission tomography with 2-[18F] fluoro-2-deoxy-D-glucose in oncology: Part II. The clinical value in detecting and staging primary tumours. J Cancer Res Clin Oncol 126:560–574PubMedCrossRefGoogle Scholar
  2. 2.
    Albers P, Bender H, Yilmaz H, Schoenreich G, Biersack HJ, Mueller SC (1999) Positron emission tomography in the clinical staging of patients with stage I and II testicular germ cell tumors. Urology 53:808–811PubMedCrossRefGoogle Scholar
  3. 3.
    Ahlstrom H, Malmstrom PU, Letocha H, Andersson J, Lanhstrom B, Nilsson S (1996) Positron emission tomography in the diagnosis and staging of urinary bladder cancer. Acta Radiol 2:180–185CrossRefGoogle Scholar
  4. 4.
    Bachor R, Kotzerke J, Reske SN, Hautmann R (1999) Lymph node staging of bladder neck carcinoma with positron emission tomography. Urologe A 38:46–50PubMedCrossRefGoogle Scholar
  5. 5.
    Bokemeyer C, Kollmannsberger C, Oechsle K, Dohmen BM, Pfannenberg AC, Claussen CD, Bares R, Kanz L (2002) Early prediction of treatment response to high-dose salvage chemotherapy in patients with relapsed germ cell cancer using [18F]FDG PET. Br J Cancer 86:506–511PubMedCrossRefGoogle Scholar
  6. 6.
    Bos R, van der Hoeven JJ, van der Wall E (2002) Biologic correlates of (18)fluordeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol 20:379–387PubMedCrossRefGoogle Scholar
  7. 7.
    Chang CH, Wu HC, Tsai JJP, Shen YY, Changlai SP, Kao A (2003) Detecting metastatic pelvic lymph nodes by 18F-2-deoxyglucose positron emission tomography in patients with prostate-specific antigen relapse after treatment for localized prostate cancer. Urol Int 70:311–315PubMedCrossRefGoogle Scholar
  8. 8.
    Cremerius U, Effert PJ, Adam G, Sabri O, Zimny M, Wagenknecht G, Jakse G, Buell U (1998) FDG PET for detection and control of metastatic germ cell tumor. J Nucl Med 39:815–22PubMedGoogle Scholar
  9. 9.
    Dehdashti F, Picus J, Michalski JM, Dence CS, Siegel BA, Katzenellenbogen JA (2005) Positron tomographic assessment of androgen receptors in prostatic carcinoma. Eur J Nucl Med Mol Imaging 32:344–350PubMedCrossRefGoogle Scholar
  10. 10.
    de Jong IJ, Pruim J, Elsinga PH, Jongen MM; Mensink HJ, Vaalburg W (2002) Visualisation of bladder cancer using (11)C-choline PET: first clinical experience. Eur J Nucl Med Mol Imaging 29:1283–1288PubMedCrossRefGoogle Scholar
  11. 11.
    de Jong IJ, Pruim J, Elsinga PH (2003) Preoperative staging of pelvic lymph nodes in prostate cancer by 11C-choline PET. J Nucl Med 44:331–335PubMedGoogle Scholar
  12. 12.
    de Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJA (2003) 11C-choline positron emission tomography for the evaluation after treatment of localized prostate cancer. Eur Urol 44:32–39PubMedCrossRefGoogle Scholar
  13. 13.
    Delbeke D (1999) Oncological applications of FDG PET imaging: brain tumors, colorectal cancer, lymphoma and melanoma. J Nucl Med 40:591–603PubMedGoogle Scholar
  14. 14.
    De Santis M, Becherer A, Bokemeyer C, Stoiber F, Oechsle K, Kletter K, Dohmen BM, Dittrich C, Pont J (2001) Predictive impact of 2–18fluoro-2-deoxy-D-glucose positron emission tomography for residual postchemotherapy masses in patients with bulky seminoma. J Clin Oncol 19:3740–3744PubMedGoogle Scholar
  15. 15.
    De Santis M, Becherer A, Bokemeyer C, Stoiber F, Oechsle K, Sellner F, Lang A, Kletter K, Dohmen BM, Dittrich C, Pont J (2004) 2–18fluoro-deoxy-D-glucose positron emission tomography is a reliable predictor for viable tumor in postchemotherapy seminoma: an update of the prospective multicentric SEMPET trial. J Clin Oncol 22:1034–1039PubMedCrossRefGoogle Scholar
  16. 16.
    De Santis M, Pont J (2004) The role of positron emission tomography in germ cell cancer. World J Urol 22:41–46PubMedCrossRefGoogle Scholar
  17. 17.
    Drieskens O, Oyen R, van Poppel H, Vankan Y, Flamen P, Mortelsmans L (2005) FDG-PET for preoperative staging of bladder cancer. Eur J Nucl Med Mol Imaging 32:1412–1417PubMedCrossRefGoogle Scholar
  18. 18.
    Fernandez EB, Moul JW, Foley JP, Colon E, McLeod DG (1994) Retroperitoneal imaging with third and fourth generation computed axial tomography in clinical stage I nonseminomatous germ cell tumors. Urology 44:548–552PubMedCrossRefGoogle Scholar
  19. 19.
    Fricke E, Machtens S, Hofmann M, van den Hoff J, Bergh S, Brunkhorst T, Meyer GJ, Karstens JH, Knapp WH, Boerner AR (2003) Positron emission tomography with 11C-acetate and 18F-FDG in prostate cancer patients. Eur J Nucl Med Mol Imaging 30:607–611PubMedCrossRefGoogle Scholar
  20. 20.
    Gofrit ON, Mishani E, Orevi M, Klein M, Freedman N, Pode D (2006) Contribution of 11C-choline positron emission tomography/computerized tomography to preoperative staging of advanced transitional cell carcinoma. J Urol 176:940–944PubMedCrossRefGoogle Scholar
  21. 21.
    Hain SF, O’Doherty MJ, Timothy AR, Leslie M, Harper P, Hudart R (2000) Fluorodeoxyglucose positron emission tomography in the evaluation of germ cell tumors at relapse. Br J Cancer 83:863–869PubMedCrossRefGoogle Scholar
  22. 22.
    Hain SF, O’Doherty MJ, Timothy AR (2000) Fluorodeoxyglucose PET in the initial staging of germ cell tumours. Eur J Nucl Med 27:590–594PubMedCrossRefGoogle Scholar
  23. 23.
    Hara T, Kosaka N, Kishi H (1998) PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 39:990–995PubMedGoogle Scholar
  24. 24.
    Hara T, Inagaki K, Kosaka N, Kishi H (2002) Sensitive detection of mediastinal lymph node metastasis of lung cancer with 11C-choline PET. J Nucl Med 41:187–199Google Scholar
  25. 25.
    Harisinghani MG, Barentsz J, Hahn PF (2003) Noninvasive detection of clinically occult lymph node metastases in prostate cancer. N Engl J Med 348:2491–2499PubMedCrossRefGoogle Scholar
  26. 26.
    Heicapell R, Müller-Mattheis V, Reinhardt M (1999) Staging of pelvic lymph nodes in neoplasms of the bladder and prostate by positron emission tomography with 2-[(18F)]-2-deoxy-D-glucose. Eur Urol 36:582–587CrossRefGoogle Scholar
  27. 27.
    Herrmann K, Schröder H, Eberhard S (2004) FDG PET for the detection of recurrent/metastatic prostate carcinoma in patients with rising PSA after radical prostatectomy (Abstr). J Nucl Med 45:359Google Scholar
  28. 28.
    Higashi K, Ueda Y, SakumaT (2001) Comparison of [(18)F]FDG PET and (201)T1 SPECT in evaluation of pulmonary nodules. J Nucl Med 42:1489–1496PubMedGoogle Scholar
  29. 29.
    Horwich A, Alsanjari N, A’Hern R (1992) Surveillance following orchidectomy for stage I testicular seminoma. Br J Cancer 65:775–778PubMedGoogle Scholar
  30. 30.
    Kao CH, Hsieh JF, Tsai SC (2000) Comparison and discrepancy of 18F-2-deoxyglucose positron emission tomography and Tc-99 m MDP bone scan to detect bone metastases. Anticancer Res 20:2189–2192PubMedGoogle Scholar
  31. 31.
    Karapetis CS, Strickland AH, Yip D, Steer C, Harper PG (2003) Use of fluorodeoxyglucose positron emission tomography scans in patients with advanced germ cell tumour following chemotherapy: single-center experience with long-term follow-up. Int Med 33:427–435CrossRefGoogle Scholar
  32. 32.
    Kato T, Tsukamato E, Kuge Y et al (2002) Accumulation of (11C) acetate in normal prostate and benign prostatic hyperplasia: comparison with prostate cancer. Eur J Nucl Med 29:1492–1495CrossRefGoogle Scholar
  33. 33.
    Kollmannsberger C, Oechsle K, Dohmen BM, Pfannenberg AC, Bares R, Claussen CD et al (2002) Prospective comparison of [18F] fluorodeoxyglucose positron emission tomography with conventional assessment by computed tomography scans and serum tumor markers for the evaluation of residual masses in patients with nonseminomatous germ cell carcinoma. Cancer 94:2353–2362PubMedCrossRefGoogle Scholar
  34. 34.
    Kosuda S, Kison PV, Greenough R, Grossman HB, Wahl RL (1997) Preliminary assessment of fluorine-18fluorodeoxyglucose positron emisson tomography in patients with bladder cancer. Eur J Nucl Med 24:615–620PubMedGoogle Scholar
  35. 35.
    Kotzerke J, Prang J, Neumaier B (2000) Experience with carbon-11 choline positron emission tomography in prostate carcinoma. Eur J Nucl Med 27:1415–1419PubMedCrossRefGoogle Scholar
  36. 36.
    Kotzerke J, Volkmer BG, Neumaier B, Gschwend JE, Hautmann RE, Reske SN (2002) Carbon-11 acetate positron emission tomography can detect local recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 29:1380–1384PubMedCrossRefGoogle Scholar
  37. 37.
    Kotzerke J, Volkmer BG, Glatting G, van den Hoff J, Gschwend JE, Messer P, Reske SN, Neumaier B (2003) Intraindividual comparison of [11C] acetate and [11C] choline PET for detection of metastases of prostate cancer. Nuklearmedizin 42:25–30PubMedGoogle Scholar
  38. 38.
    Kubota R, Kubota K, Yamada S (1995) Methionine uptake by tumor tissue: a microautoradiographic comparison with FDG. J Nucl Med 36:484–492PubMedGoogle Scholar
  39. 39.
    Lassen U, Daugaard G, Eigtved A, Hojgaard L, Damgaard K, Rorth M (2003) Whole body FDG-PET in patients with stage I non-seminomatous germ cell tumours. Eur J Nucl Med Mol Imaging 30:396–402PubMedCrossRefGoogle Scholar
  40. 40.
    Liu IJ, Zafar MB, Lai YH, Segall GM, Terris MK (2001) Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer. Urology 57:108–111PubMedCrossRefGoogle Scholar
  41. 41.
    Macapinlac HA, Humm JL, Akhurst T (1999) Differential metabolism and pharmacokinetics of L-[1-(11)C]-methionine and 2-[(18)F] fluoro-2-deoxy-D-glucose(FDG) in androgen independent prostate cancer. Clin Positron Imaging 2:173–181PubMedCrossRefGoogle Scholar
  42. 42.
    Maszelin P, Lumbroso J, Theodore C, Foehrenbach H, Merlet P, Syrota A (2000) Fluorodeoxyglucose (FDG) positron emission tomography (PET) in testicular germ cell tumors in adults: preliminary French clinical evaluation, development of the technique and its clinical applications. Prog Urol 10:1190–1199PubMedGoogle Scholar
  43. 43.
    McLeod DG, Weiss RB, Stablein DM (1991) Staging relationship and outcome in early stage testicular cancer: a report from the Testicular Intergroup Study. J Urol 145:1178–1183PubMedGoogle Scholar
  44. 44.
    Müller-Matheis V, Reinhardt M, Gerharz CD, Fürst G, Vosberg H, Müller-Gärtner HW, Ackermann R (1998) Die Positronenemissionstomography mit [18F]-2-fluoro-2-deoxy-D-glucose (18FDG-PET) bei der Diagnose retroperitonealer Lymphknotenmetastasen von Hodentumoren. Urologe A 37:609–620CrossRefGoogle Scholar
  45. 45.
    Nunez R, Macapinlac HA, Yeung HW et al (2002) Combined 18F-FDG and 11C-methionine PET scans in patients with newly progressive metastatic prostate cancer. J Nucl Med 43:46–55PubMedGoogle Scholar
  46. 46.
    Nuutinen JM, Lekinen S, Elomaa I, Minn H, Varpula M, Solin O, Söderström K-O, Joensuu H, Salminen E (1996) Detection of residual tumours in postchemotherapy testicular cancer by FDG-PET. Eur J Cancer 33:1234–1241CrossRefGoogle Scholar
  47. 47.
    Oyama N, Akino H, Suzuki Y, Kanamaru H, Sadato N, Yonekura Y, Okada K (1999) The increased accumulation of [18F] fluorodeoxyglucose in untreated prostate cancer. Jpn J Clin Oncol 29:623–629PubMedCrossRefGoogle Scholar
  48. 48.
    Oyama N, Akino H, Kanamaru H, Suzuki Y, Muramoto S, Yonekura Y, Sadato N, Yamamoto K, Okada K (2002) 11C-acetate PET imaging of prostate cancer. J Nucl Med 43:181–186PubMedGoogle Scholar
  49. 49.
    Oyama N, Miller TR, Dehdashti F, Siegel BA, Fischer KC, Michalski JM, Kibel AS, Andriole GL, Picus J, Welch MJ (2003) 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med 44:549–555PubMedGoogle Scholar
  50. 50.
    Pfannenberg AC, Oechsle K, Bokemeyer C, Kollmannsberger C, Dohmen BM, Bares R, Hartmann JT, Vontheim R, Claussen CD (2004) The role of [18F] FDG-PET, CT/MRI and tumor marker kinetics in the evaluation of postchemotherapy residual masses in the metastatic germ cell tumors: prospects for management. World J Urol 22:132–139PubMedCrossRefGoogle Scholar
  51. 51.
    Picchio M, Treiber U, Beer JA, Metz S, Bössner P (2006) Value of 11C-choline PET and contrast-enhanced CT for staging of bladder cancer: correlation with histopathologic findings. J Nucl Med 47:938–944PubMedGoogle Scholar
  52. 52.
    Sanchez D, Zudaire JJ, Fernandez JM, Lopez J, Arocena J, Sanz G, Gimenez M, Rosell D, Robles JE, Berian JM (2002) 18F-fluoro-2-deoxyglucose-positron emission tomography in the evaluation of nonseminomatous germ cell tumours at relapse. BJU Int 89:912–916PubMedCrossRefGoogle Scholar
  53. 53.
    Sanz G, Robles JE, Gimenez M (1998) Positron emission tomography with 18fluorine-labeled deoxyglucose: utility in localized and advanced prostate cancer. Br J Urol 84:1028–1031Google Scholar
  54. 54.
    Seltzer MA, Barbaric Z, Belldegrun A et al (1999) Comparison of helical computerized tomography, positron emission tomography and monoclonal antibody scans for evaluation of lymph node metastases in patients with prostate specific antigen relapse after treatment for localized prostate cancer. J Urol 162:1322–1328PubMedCrossRefGoogle Scholar
  55. 55.
    Schultz SM, Einhorn LH, Conces DJ, Williams SD, Loehrer J (1989) Management of postchemotherapy residual mass in patients with advanced seminoma: Indiana University experience. J Clin Oncol 7:1497–1503PubMedGoogle Scholar
  56. 56.
    Shreve PD, Grossman HB, Gross MD, Wahl RL (1996) Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-[F-18] fluoro-D-glucose. Radiology 199:751–756PubMedGoogle Scholar
  57. 57.
    Spermon JR, De Geus-Oei LF, Kiemeney LALM, Witjes JA, Oyen WJG (2002) The role of 18F-fluoro-2-deoxyglucose-positron emission tomography in initial staging and re-staging after chemotherapy for testicular germ cell tumours. BJU Int 89:549–556PubMedCrossRefGoogle Scholar
  58. 58.
    Strauss LG (1996) Fluorine-18 deoxyglucose and false positive results: a major problem in the diagnosis of oncological patients. Eur J Nucl Med 23:1409–1415PubMedCrossRefGoogle Scholar
  59. 59.
    Sugarawa Y, Zasadny KR, Grossman HB, Francis IR, Clarke MF, Wahl RL (1999) Germ cell tumor:differentiation of viable tumor, mature teratoma, and necrotic tissue with FDG PET and kinetic modeling. Radiology 211:249–256Google Scholar
  60. 60.
    Sung J, Espiritu JI, Segall GM, Terris MK (2003) Fluorodeoxyglucose positron emission tomography studies in the diagnosis and staging of clinically advanced prostate cnacer. BJU Int 92:24–27PubMedCrossRefGoogle Scholar
  61. 61.
    Swinnen JV, van Veldhovem PP, Timmermanns L (2003) Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. Biochem Biophys Res Commun 302:898–903PubMedCrossRefGoogle Scholar
  62. 62.
    Toth G, Lengyel Z, Balkay L, Salah MA, Tron L, Toth C (2005) Detection of prostate cancer with 11C-methionine positron emission tomography. J Urol 173:66–69PubMedCrossRefGoogle Scholar
  63. 63.
    Tsatalpas P, Beuthien-Baumann B, Kropp J, Manseck A, Tiepolt C, Hakenberg OW, Burchert W, Franke WG, Wirth MP (2002) Diagnostic value of 18F-FDG positron emission tomography for detection and treatment control of malignant germ cell tumors. Urol Int 68:157–163PubMedCrossRefGoogle Scholar
  64. 64.
    Wilson CB, Young HE, Ott RJ, Flower MA, Cronin BF, Pratt BE, McCready VR, Horwich A (1995) Imaging metastatic testicular germ cell tumors with 18FDG positron emission tomography: prospects of detection and management. Eur J Nucl Med 22:508–513PubMedCrossRefGoogle Scholar
  65. 65.
    Yeh SD, Imbriaco M, Larson SM, Garza D, Zhang JJ, Kalaigian H (1996) Detection of bony metastases of androgen independent prostate cancer by PET-FDG. Nucl MedBiol 23:693–697CrossRefGoogle Scholar
  66. 66.
    Zanzonico PB, Finn R, Pentlow KS (2004) PET-based radiation dosimetry in man of 18flurodihydrotestosterone, a new radiotracer for imaging prostate cancer. J Nucl Med 45:1966–1971PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • S. Machtens
    • 1
  • J. Serth
    • 2
  • A. Meyer
    • 3
  • C. Kleinhorst
    • 1
  • K.-J. Ommer
    • 1
  • U. Herbst
    • 1
  • M. Kieruij
    • 1
  • A. R. Boerner
    • 4
  1. 1.Department of Urology and Paediatric UrologyMarienkrankenhaus Bergisch Gladbach gGmbHBergisch GladbachGermany
  2. 2.Department of Urology and Paediatric UrologyHannover Medical SchoolHannoverGermany
  3. 3.Department of Radiation OncologyHannover Medical SchoolHannoverGermany
  4. 4.Department of Nuclear MedicineKrankenhaus der Barmherzigen BrüderTrierGermany

Personalised recommendations