World Journal of Urology

, Volume 25, Issue 3, pp 275–283 | Cite as

The future of lasers in urology

Topic Paper

Abstract

The use of laser applications in urology has undergone significant advances over the past 20 years. Laser technology is now used in a wide variety of procedures, and has become the primary treatment modality or standard of care for many urologic conditions. Despite these advances, a number of challenges still face laser utilization in urologic practice. Recent work has illuminated the potential improvement and further optimization of this field. Improvements in types of lasers, the wavelength of energy used, optical fiber delivery systems, precision of laser application and cost reduction have served to further improve laser technology and extend the potential applications.

Keywords

Fiber Lithotrypsy Laser Nd:YAG Ho:YAG KTP Diode laser Er:YAG Thullium Continuous Pulsed 

References

  1. 1.
    Fried NM (2006) Therapeutic applications of lasers in urology: an update. Expert Rev Med Devices 3(1):81–94PubMedCrossRefGoogle Scholar
  2. 2.
    Kourambas J, Delvecchio FC, Preminger GM (2001) Low-power holmium laser for the management of urinary tract calculi, structures, and tumors. J Endourol 15(5):529–532PubMedCrossRefGoogle Scholar
  3. 3.
    Fried NM (2007) New laser treatment approaches for benign prostatic hyperplasia. Curr Urol Rep 8(1):47–52PubMedCrossRefGoogle Scholar
  4. 4.
    Zorcher T et al (1999) In vitro study concerning the efficiency of the frequency-doubled double-pulse Neodymium:YAG laser (FREDDY) for lithotripsy of calculi in the urinary tract. Lasers Surg Med 25(1):38–42PubMedCrossRefGoogle Scholar
  5. 5.
    Dave R, Monk B, Mahaffey P (2003) Treatment of Bowen’s disease with carbon dioxide laser. Lasers Surg Med 32(5):335PubMedCrossRefGoogle Scholar
  6. 6.
    Merberg GN (1993) Current status of infrared fiber optics for medical laser power delivery. Lasers Surg Med 13(5):572–576PubMedCrossRefGoogle Scholar
  7. 7.
    Teichman JM et al (1998) Holmium:YAG lithotripsy: photothermal mechanism converts uric acid calculi to cyanide. J Urol 160(2):320–324PubMedCrossRefGoogle Scholar
  8. 8.
    Teichman JM et al (1998) Holmium:YAG lithotripsy of uric acid calculi. J Urol 160(6 Pt 1):2130–2132PubMedGoogle Scholar
  9. 9.
    Nazif OA et al (2004) Review of laser fibers: a practical guide for urologists. J Endourol 18(9):818–829PubMedCrossRefGoogle Scholar
  10. 10.
    Yang Y, Chaney CA, Fried NM (2004) Erbium:YAG laser lithotripsy using hybrid germanium/silica optical fibers. J Endourol 18(9):830–835PubMedCrossRefGoogle Scholar
  11. 11.
    Fried NM (2001) Potential applications of the erbium:YAG laser in endourology. J Endourol 15(9):889–894PubMedCrossRefGoogle Scholar
  12. 12.
    Ngo AK, Fried NM (2006) Side-firing germanium oxide optical fibers for use with erbium:YAG laser. J Endourol 20(7):475–478PubMedCrossRefGoogle Scholar
  13. 13.
    Fried NM (2005) Thulium fiber laser lithotripsy: an in vitro analysis of stone fragmentation using a modulated 110-watt Thulium fiber laser at 1.94 microm. Lasers Surg Med 37(1):53–58PubMedCrossRefGoogle Scholar
  14. 14.
    Fried NM, Murray KE (2005) High-power thulium fiber laser ablation of urinary tissues at 1.94 micron. J Endourol 19(1):25–31PubMedCrossRefGoogle Scholar
  15. 15.
    Polletto TJ et al (2006) Comparison of germanium oxide fibers with silica and sapphire fiber tips for transmission of erbium: YAG laser radiation. Lasers Surg Med 38(8):787–791PubMedCrossRefGoogle Scholar
  16. 16.
    Chaney CA, Yang Y, Fried NM (2004) Hybrid germanium/silica optical fibers for endoscopic delivery of erbium:YAG laser radiation. Lasers Surg Med 34(1):5–11PubMedCrossRefGoogle Scholar
  17. 17.
    Shenfeld O et al (1994) Silver halide fiber optic radiometric temperature measurement and control of CO2 laser-irradiated tissues and application to tissue welding. Lasers Surg Med 14(4):323–328PubMedCrossRefGoogle Scholar
  18. 18.
    Zilker Z et al (2001) Carbon dioxide laser and silver halide infrared transmitting fibers for tympanoplasty: an experimental animal model. Otolaryngol Head Neck Surg 125(3):157–160PubMedCrossRefGoogle Scholar
  19. 19.
    Sato S et al (2005) Hollow-waveguide-based nanosecond, near-infrared pulsed laser ablation of tissue. Lasers Surg Med 37(2):149–154PubMedCrossRefGoogle Scholar
  20. 20.
    Shi YW et al (2005) Multiwavelength laser light transmission of hollow optical fiber from the visible to the mid-infrared. Opt Lett 30(21):2867–2869PubMedCrossRefGoogle Scholar
  21. 21.
    Nakazawa M et al (2006) Hollow polycarbonate fiber for Er:YAG laser light delivery. Opt Lett 31(10):1373–1375PubMedCrossRefGoogle Scholar
  22. 22.
    Pinthus JH et al (2006) Photodynamic therapy for urological malignancies: past to current approaches. J Urol 175(4):1201–1207PubMedCrossRefGoogle Scholar
  23. 23.
    Waidelich R et al (2003) Whole bladder photodynamic therapy with 5-aminolevulinic acid using a white light source. Urology 61(2):332–337PubMedCrossRefGoogle Scholar
  24. 24.
    Plaks V et al (2004) Photodynamic therapy of established prostatic adenocarcinoma with TOOKAD: a biphasic apparent diffusion coefficient change as potential early MRI response marker. Neoplasia 6(3):224–233PubMedCrossRefGoogle Scholar
  25. 25.
    Moore CM et al (2006) Photodynamic therapy using meso tetra hydroxy phenyl chlorin (mTHPC) in early prostate cancer. Lasers Surg Med 38(5):356–363PubMedCrossRefGoogle Scholar
  26. 26.
    Huang Z et al (2005) Studies of a vascular-acting photosensitizer, Pd-bacteriopheophorbide (Tookad), in normal canine prostate and spontaneous canine prostate cancer. Lasers Surg Med 36(5):390–397PubMedCrossRefGoogle Scholar
  27. 27.
    Weersink RA et al (2005) Assessment of cutaneous photosensitivity of TOOKAD (WST09) in preclinical animal models and in patients. Photochem Photobiol 81(1):106–113PubMedCrossRefGoogle Scholar
  28. 28.
    Gulsoy M et al (2006) Closure of skin incisions by 980-nm diode laser welding. Lasers Med Sci 21(1):5–10PubMedCrossRefGoogle Scholar
  29. 29.
    Simhon D et al (2001) Laser soldering of rat skin, using fiberoptic temperature controlled system. Lasers Surg Med 29(3):265–273PubMedCrossRefGoogle Scholar
  30. 30.
    Burch S et al (2005) Photodynamic therapy for the treatment of vertebral metastases in a rat model of human breast carcinoma. J Orthop Res 23(5):995–1003PubMedCrossRefGoogle Scholar
  31. 31.
    Simhon D et al (2004) Closure of skin incisions in rabbits by laser soldering, I: Wound healing pattern. Lasers Surg Med 35(1):1–11PubMedCrossRefGoogle Scholar
  32. 32.
    Simhon D et al (2007) Immediate tight sealing of skin incisions using an innovative temperature-controlled laser soldering device: in vivo study in porcine skin. Ann Surg 245(2):206–213PubMedCrossRefGoogle Scholar
  33. 33.
    Fried NM, Walsh JT Jr (2000) Laser skin welding: in vivo tensile strength and wound healing results. Lasers Surg Med 27(1):55–65PubMedCrossRefGoogle Scholar
  34. 34.
    Wolf JS Jr et al (1997) Comparison of fibrin glue, laser weld, and mechanical suturing device for the laparoscopic closure of ureterotomy in a porcine model. J Urol 157(4):1487–1492PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Surgery/Division of UrologyDuke University Medical CenterDurhamUSA

Personalised recommendations