World Journal of Urology

, Volume 25, Issue 5, pp 477–489

The NF-κB/IL-6 pathway in metastatic androgen-independent prostate cancer: new therapeutic approaches?

  • Bernard Paule
  • Stéphane Terry
  • Laurence Kheuang
  • Pascale Soyeux
  • Francis Vacherot
  • Alexandre de la Taille
Review

Abstract

The nuclear factor of kappa beta (NF-κB) transcription factor regulates the transcription of numerous genes including that of interleukin 6 (IL-6). The IL-6 acts as an autocrine and paracrine growth factor of androgen-independent prostate cancer. An aberrant expression of the IL-6 gene and an increase in IL-6 expression are detected in bone metastatic and hormone-refractory prostate cancer. IL-6 has been suggested to have a crucial role in the resistance to chemotherapy or hormonal therapy involving apoptotic cell death. The NF-κB/IL-6 dependent pathways promote tumour-cell survival and in most situations protect cells against apoptotic stimuli. These data provide a rational framework for targeting NF-κB and IL-6 activity in novel biologically based therapies for aggressive and androgen independent prostate cancers.

Keywords

Prostate cancer NF-κB IL-6 New therapies Androgen independence Metastasis 

References

  1. 1.
    Giri D, Ozen M, Ittmann M (2001) Interleukin-6 is an autocrine growth factor in human prostate cancer. Am J Pathol 159:2159–2165PubMedGoogle Scholar
  2. 2.
    Lee SO, Lou W, Hou M, de Miguel F, Gerber L, Gao AC (2003) Interleukin-6 promotes androgen-independent growth in LNCaP human prostate cancer cells. Clin Cancer Res 9:370–376PubMedGoogle Scholar
  3. 3.
    Lou W, Ni Z, Dyer K, Tweardy DJ, Gao AC (2000) Interleukin-6 induces prostate cancer cell growth accompanied by activation of stat3 signaling pathway. Prostate 42:239–242PubMedGoogle Scholar
  4. 4.
    Shariat SF, Andrews B, Kattan MW, Kim J, Wheeler TM, Slawin KM (2001) Plasma levels of interleukin-6 and its soluble receptor are associated with prostate cancer progression and metastasis. Urology 58:1008–1015PubMedGoogle Scholar
  5. 5.
    Adler HL, McCurdy MA, Kattan MW, Timme TL, Scardino PT, Thompson TC (1999) Elevated levels of circulating interleukin-6 and transforming growth factor-beta1 in patients with metastatic prostatic carcinoma. J Urol 161:182–187PubMedGoogle Scholar
  6. 6.
    Drachenberg DE, Elgamal AA, Rowbotham R, Peterson M, Murphy GP (1999) Circulating levels of interleukin-6 in patients with hormone refractory prostate cancer. Prostate 41:127–133PubMedGoogle Scholar
  7. 7.
    Smith PC, Hobisch A, Lin DL, Culig Z, Keller ET (2001) Interleukin-6 and prostate cancer progression. Cytokine Growth Factor Rev 12:33–40PubMedGoogle Scholar
  8. 8.
    Borsellino N, Belldegrun A, Bonavida B (1995) Endogenous interleukin 6 is a resistance factor for cis-diamminedichloroplatinum and etoposide mediated cytotoxicity of human prostate carcinoma cell lines. Cancer Res 55:4633–4639PubMedGoogle Scholar
  9. 9.
    Ghosh S, May MJ, Kopp EB (1998) NF-kappaB and Rel proteins: evolutionarily conserved mediators of immune responses. Ann Rev Immunol 16:225–260Google Scholar
  10. 10.
    Barkett M, Gilmore TD (1999) Control of apoptosis by Rel/NF-kappaB transcription factors. Oncogene 18:6910–6924PubMedGoogle Scholar
  11. 11.
    Beg AA, Baltimore D (1996) An essential role for NF-κB in preventing TNF-beta-induced cell death. Science 274:782–784PubMedGoogle Scholar
  12. 12.
    Cabannes E, Khan G, Aillet F, Jarrett RF, Hay RT (1999) Mutations in the IkBa gene in Hodgkin’s disease suggest a tumour suppressor role for IkB. Oncogene 18:3063–3070PubMedGoogle Scholar
  13. 13.
    Wang W, Abbruzzese JL, Evans DB, Larry L, Cleary KR, Chiao PJ. 1999. The nuclear factor-kappa B RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin Cancer Res 5: 119–127PubMedGoogle Scholar
  14. 14.
    Sovak MA, Bellas RE, Kim DW, Zanieski GJ, Rogers AE, Traish AM, Sonenshein GE (1997) Aberrant nuclear factor-kappa B/Rel expression and the pathogenesis of breast cancer. J Clin Invest 100:2952–2960PubMedGoogle Scholar
  15. 15.
    Nakshatri HPB-N, Martin DA, Goulet RJ, Sledge GW (1997) Constitutive activation of NF-κB during progression of breast cancer to hormone-independent growth. Mol Cell Biol 17:3629–3639PubMedGoogle Scholar
  16. 16.
    Tai DI, Tsai SL, Chang YH, Huang SN, Chen TC, Chang KS, Liaw YF (2000) Constitutive activation of nuclear factor kappaB in hepatocellular carcinoma. Cancer 89:2274–2281PubMedGoogle Scholar
  17. 17.
    Ludwig L, Kessler H, Wagner M, Hoang-Vu C, Dralle H, Adler G, Bohm BO, Schmid RM (2001) Nuclear factor kappa B is constitutively active in C-cell carcinoma and required for RET-induced transformation. Cancer Res 61: 4526–4535PubMedGoogle Scholar
  18. 18.
    Ryan KM, Ernst MK, Rice NR, Vousden KH (2004) Role of NF-κB in p53-mediated programmed cell death. Nature 404:892–897Google Scholar
  19. 19.
    Chan H, Bartos DP, Owen-Schaub LB (1999) Activation dependent transcriptional regulation of the human Fas promoter requires NF-B p50–p65 recruitment. Mol Cell Biol 19:2098–2108PubMedGoogle Scholar
  20. 20.
    Hinz M, Krappmann D, Eichten A, Heder A, Scheidereit C, Strauss M (1999) NF-kappaB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol Cell Biol 19:2690–2698PubMedGoogle Scholar
  21. 21.
    Karin M, Cao Y, Greten FR, Li ZW (2002) NF-kappa B in cancer: From innocent bystander to major culprit. Nat Rev Cancer 2:301–310PubMedGoogle Scholar
  22. 22.
    Baldwin AS (2001) Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest 107:241–246PubMedGoogle Scholar
  23. 23.
    Ross JS, Kallakury BV, Sheehan CE, Fisher HA, Kaufman RP Jr, Kaur P, Gray K, Stringer B (2004) Expression of nuclear factor-kappa B and I kappa B alpha proteins in prostatic adenocarcinomas: correlation of nuclear factor-kappa B immunoreactivity with disease recurrence. Clin Cancer Res. 10:2466–2472PubMedGoogle Scholar
  24. 24.
    Gasparian AV, Yao YJ, Kowalczyk D, Lyakh LA, Karseladze A, Slaga TJ, Budunova IV (2002) The role of IKK in constitutive activation of NF-kappaB transcription factor in prostate carcinoma cells. J Cell Sci 115(Pt 1):141–151PubMedGoogle Scholar
  25. 25.
    Suh J, Payvandi F, Edelstein LC, Amenta PS, Zong WX, Ge´linas C, Rabson AB (2002) Mechanisms of constitutive NF-kappa B activation in human prostate cancer cells. Prostate 52:183–200PubMedGoogle Scholar
  26. 26.
    Zhao Q, Lee FS (1999) Mitogen-activated protein kinase/ERK kinase kinases 2 and 3 activate nuclear factorkappaB through I kappa B kinase-alpha and I kappa B kinase-beta. J Biol Chem 274:8355–8358PubMedGoogle Scholar
  27. 27.
    Suh J, Rabson A.B (2004) NF-kB activation in human prostate cancer: important mediator or epiphenomenon? J Cell Biochem 91:100–117PubMedGoogle Scholar
  28. 28.
    Shimada K, Nakamura M, Ishida E, Kishi M, Yonehara S, Konishi N (2002) Contributions of mitogen-activated protein kinase and nuclear factor kappa B to N-(4- hydroxyphenyl)retinamide-induced apoptosis in prostate cancer cells. Mol Carcinog 35:127–137PubMedGoogle Scholar
  29. 29.
    Kimura K, Gelmann EP (2002) Propapoptotic effects of NF-kappaB in LNCaP prostate cancer cells lead to serine protease activation. Cell Death Differ 9:972–980PubMedGoogle Scholar
  30. 30.
    Charlie D, Sawyers CL (2002) NF-KB activates prostate-specific antigen expression and is upregulated in androgen-independent prostate cancer. Mol Cell Biol 22:2862–2870Google Scholar
  31. 31.
    Palayoor ST, Youmell MY, Calderwood SK, Coleman CN, Price BD (1999) Constitutive activation of IkappaB kinase alpha and NF-kappaB in prostate cancer cells is inhibited by ibuprofen. Oncogene 18:7389–7394PubMedGoogle Scholar
  32. 32.
    Ling MT, Wang X, Ouyang XS, Xu K, Tsao SW, Wong YC (2003) Id-1 expression promotes cell survival through activation of NF-kappaB signalling pathway in prostate cancer cells. Oncogene 22:4498–4508PubMedGoogle Scholar
  33. 33.
    Gustin JA, Maehama T, Dixon JE, Donner DB (2001) The PTEN tumor suppressor protein inhibits tumor necrosis factor-induced nuclear factor kappa B activity. J Biol Chem 276:27740–27744PubMedGoogle Scholar
  34. 34.
    Tantivejkul K, Loberg RD, Mawocha SC, Day LL, John LS, Pienta BA, Rubin MA, Pienta KJ. (2005) PAR1-mediated NFkappaB activation promotes survival of prostate cancer cells through a Bcl-xL-dependent mechanism. J Cell Biochem 96:641–652PubMedGoogle Scholar
  35. 35.
    Lu T, Burdelya LG, Swiatkowski SM, Boiko AD, Howe PH, Stark GR, Gudkov AV (2004) Secreted transforming growth factor beta2 activates NF-kappaB, blocks apoptosis, and is essential for the survival of some tumor cells. Proc Natl Acad Sci USA 101:7112–7117PubMedGoogle Scholar
  36. 36.
    Park JI, Lee MG, Cho K, Park BJ, Chae KS, Byun DS, Ryu BK, Park YK, Chi SG (2003) Transforming growth factor-beta1 activates interleukin-6 expression in prostate cancer cells through the synergistic collaboration of the Smad2, p38-NF-kappaB, JNK, and Ras signaling pathways. Oncogene 22:4314–4332PubMedGoogle Scholar
  37. 37.
    Zerbini LF, Wang Y, Cho JY, Libermann TA. (2003) Constitutive activation of nuclear factor KB p50/p65 and Fra-1 and JunD is essential for deregulated interleukin 6 expression in prostate cancer. Cancer Res 63:2206–2215PubMedGoogle Scholar
  38. 38.
    Keller ET, Chang C, Ershler WB (1996) Inhibition of NF kappa B activity through maintenance of IkappaBalpha levels contributes to dihydrotestosterone-mediated repression of the interleukin-6 promoter. J Biol Chem 271:26267–26275PubMedGoogle Scholar
  39. 39.
    Zerbini LF, Wang Y, Cho JY, Libermann TA (2003) Constitutive activation of nuclear factor kappaB p50/p65 and Fra-1 and JunD is essential for deregulated interleukin 6 expression in prostate cancer. Cancer Res 63:2206–2215PubMedGoogle Scholar
  40. 40.
    Gao AC, Lou W, Isaacs JT (2000) Enhanced GBX2 expression stimulates growth of human prostate cancer cells via transcriptional up-regulation of the interleukin 6 gene. Clin Cancer Res 6:493–497PubMedGoogle Scholar
  41. 41.
    Collum RG, Brutsaert S, Lee G, Schindler C.A (2000) Stat3-interacting protein (StIP1) regulates cytokine signal transduction. Proc Natl Acad Sci USA 97:10120–10125PubMedGoogle Scholar
  42. 42.
    Hirano T, Ishihara K, Hibi M (2000) Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 19:2548–2546PubMedGoogle Scholar
  43. 43.
    Siegall CB, Schwab G, Nordan RP, FitzGerald DJ, Pastan I (1990) Expression of the interleukin 6 receptor and interleukin 6 in prostate carcinoma cells. Cancer Res 50:7786–7788PubMedGoogle Scholar
  44. 44.
    Siegsmund MJ, Yamazaki H, Pastan I (1994) Interleukin 6 receptor mRNA in prostate carcinomas and benign prostate hyperplasia. J Urol 151:1396–1399PubMedGoogle Scholar
  45. 45.
    Okamoto M, Lee C, Oyasu R (1997) Interleukin-6 as a paracrine and autocrine growth factor in human prostatic carcinoma cells in vitro. Cancer Res 57:141–146PubMedGoogle Scholar
  46. 46.
    Chung TD, Yu JJ, Kong TA, Spiotto MT, Lin JM (2000) Interleukin-6 activates phosphatidylinositol-3 kinase, which inhibits apoptosis in human prostate cancer cell lines. Prostate 42:1–7PubMedGoogle Scholar
  47. 47.
    Dhir R, Ni Z, Lou W, DeMiguel F, Grandis JR, Gao AC (2002) Stat3 activation in prostatic carcinomas. Prostate 51:241–246 PubMedGoogle Scholar
  48. 48.
    Fukada T, Ohtani T, Yoshida Y, Shirogane T, Nishida K, Nakajima K, Hibi M, Hirano T (1998) STAT3 orchestrates contradictory signals in cytokine-induced G1 to S cell-cycle transition. EMBO J 17:6670–6677PubMedGoogle Scholar
  49. 49.
    Mori S, Murakami-Mori K, Bonavida B (1999) Interleukin-6 induces G1 arrest through induction of p27 (Kip1), a cyclin-dependent kinase inhibitor, and neuron-like morphology in LNCaP prostate tumor cells. Biochem Biophys Res Commun 257:609–614PubMedGoogle Scholar
  50. 50.
    Spiotto MT, Chung TD (2000) STAT3 mediates IL-6-induced neuroendocrine differentiation in prostate cancer cells. Prostate 42:186–195PubMedGoogle Scholar
  51. 51.
    Sanford DC, Dewille JW (2005) C/EBPdelta is a downstream mediator of IL-6 induced growth inhibition of prostate cancer cells. Prostate 63:143–154PubMedGoogle Scholar
  52. 52.
    Hobisch A, Ramoner R, Fuchs D, Godoy-Tundidor S, Bartsch G, Klocker H, Culig Z (2001) Prostate cancer cells (LNCaP) generated after long-term interleukin 6 (IL-6) treatment express IL-6 and acquire an IL-6 partially resistant phenotype. Clin Cancer Res 7:2941–2948PubMedGoogle Scholar
  53. 53.
    Steiner H, Godoy-Tundidor S, Rogatsch H, Berger AP, Fuchs D, Comuzzi B, Bartsch G, Hobisch A, Culig Z (2003) Accelerated in vivo growth of prostate tumors that up-regulate interleukin-6 is associated with reduced retinoblastoma protein expression and activation of the mitogen-activated protein kinase pathway. Am J Pathol 162:655–663PubMedGoogle Scholar
  54. 54.
    Shirogane T, Fukada T, Muller JM, Shima DT, Hibi M, Hirano T (1999) Synergistic roles for Pim-1 and c-Myc in STAT3-mediated cell cycle progression and antiapoptosis. Immunity 11:709–719PubMedGoogle Scholar
  55. 55.
    Catz SD, Johnson JL (2001) Transcriptional regulation of bcl-2 by nuclear factor kappa B and its significance in prostate cancer. Oncogene 20:7342–7351PubMedGoogle Scholar
  56. 56.
    Bellido T, O’Brien CA, Roberson PK, Manolagas SC (1998) Transcriptional activation of the p21(WAF1,CIP1,SDI1) gene by interleukin-6 type cytokines. A prerequisite for their pro-differentiating and anti-apoptotic effects on human osteoblastic cells. J Biol Chem 273:21137–21144PubMedGoogle Scholar
  57. 57.
    Debes JD, Schmidt LJ, Huang H, Tindall DJ (2002) p300 mediates androgen-independent transactivation of the androgen receptor by interleukin 6. Cancer Res 62:5632–5636PubMedGoogle Scholar
  58. 58.
    Lin DL, Whitney MC, Yao Z, Keller ET (2001) Interleukin-6 induces androgen responsiveness in prostate cancer cells through up-regulation of androgen receptor expression. Clin Cancer Res 7:1773–1781PubMedGoogle Scholar
  59. 59.
    Chen T, Wang LH, Farrar WL (2000) Interleukin 6 activates androgen receptor-mediated gene expression through a signal transducer and activator of transcription 3-dependent pathway in LNCaP prostate cancer cells. Cancer Res. 60:2132–2135PubMedGoogle Scholar
  60. 60.
    Hobisch A, Eder IE, Putz T, Horninger W, Bartsch G, Klocker H, Culig Z (1998) Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res 58:4640–4645PubMedGoogle Scholar
  61. 61.
    Yang L, Wang L, Lin HK, Kan PY, Xie S, Tsai MY, Wang PH, Chen YT, Chang C (2003) Interleukin-6 differentially regulates androgen receptor transactivation via PI3K-Akt, STAT3, and MAPK, three distinct signal pathways in prostate cancer cells. Biochem Biophys Res Commun 305:462–469PubMedGoogle Scholar
  62. 62.
    Ueda T, Bruchovsky N, Sadar MD (2002) Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways. J Biol Chem 277:7076–7085PubMedGoogle Scholar
  63. 63.
    Bakin RE, Gioeli D, Sikes SA, Bissonette EA, Weber MJ (2003) Constitutive activation of the Ras/mitogen-activated protein kinase signaling pathway promotes androgen hypersensitivity in LNCaP prostate cancer cells. Cancer Res. 63:1981–1989PubMedGoogle Scholar
  64. 64.
    Lin HK, Yeh S, Kang HY, Chang C (2001) Akt suppresses androgen induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc Natl Acad Sci USA 98:7200–7205PubMedGoogle Scholar
  65. 65.
    Yang L, Lin HK, Altuwaijri S, Xie S, Wang L, Chang C (2003) APPL suppresses androgen receptor transactivation via potentiating Akt activity. J Biol Chem 278:16820–16827PubMedGoogle Scholar
  66. 66.
    Jia L, Choong CS, Ricciardelli C, Kim J, Tilley WD, Coetzee GA (2004) Androgen receptor signaling: mechanism of interleukin-6 inhibition. Cancer Res 64:2619–2626PubMedGoogle Scholar
  67. 67.
    Debes JD, Comuzzi B, Schmidt LJ, Dehm SM, Culig Z, Tindall DJ (2005) p300 regulates androgen receptor-independent expression of prostate-specific antigen in prostate cancer cells treated chronically with interleukin-6. Cancer Res 65:5965–5973PubMedGoogle Scholar
  68. 68.
    Heemers HV, Sebo TJ, Debes JD, Regan KM, Raclaw KA, Murphy LM, Hobisch A, Culig Z, Tindall DJ (2007) Androgen deprivation increases p300 expression in prostate cancer cells. Cancer Res 67:3422–3430PubMedGoogle Scholar
  69. 69.
    Lin HK, Hu YC, Yang L, Altuwaijri S, Chen YT, Kang HY, Chang C (2003) Suppression versus induction of androgen receptor functions by the phosphatidylinositol 3-kinase/Akt pathway in prostate cancer LNCaP cells with different passage numbers. J Biol Chem 278:50902–50907PubMedGoogle Scholar
  70. 70.
    Ghosh PM, Malik S, Bedolla R, Kreisberg JI (2003) Akt in prostate cancer: possible role in androgen-independence. Curr Drug Metabol 4:487–496Google Scholar
  71. 71.
    Xie S, Lin HK, Ni J, Yang L, Wang L, di Sant’Agnese PA, Chang C (2004) Regulation of interleukin-6-mediated PI3K activation and neuroendocrine differentiation by androgen signaling in prostate cancer LNCaP cells. Prostate 60:61–67PubMedGoogle Scholar
  72. 72.
    Palmer J, Ernst M, Hammacher A, Hertzog PJ (2005) Constitutive activation of gp130 leads to neuroendocrine differentiation in vitro and in vivo. Prostate 62:282–289PubMedGoogle Scholar
  73. 73.
    Wright M, Tsai M, Aebersold R (2003) Androgen receptor represses the neuroendocrine transdifferentiation process in prostate cancer cells. Mol Endocrinol 17:1726–1737PubMedGoogle Scholar
  74. 74.
    Sauer CG, Roemer A, Grobholz R (2006) Genetic analysis of neuroendocrine tumor cells in prostatic carcinoma. Prostate 66:227–234PubMedGoogle Scholar
  75. 75.
    Jin RJ, Wang Y, Masumori N, Ishii K, Tsukamoto T, Shappell SB, Hayward SW, Kasper S, Matusik1 RJ (2004) NE-10 neuroendocrine cancer promotes the LNCaP xenograft growth in castrated mice. Cancer Res 64:5489–5495PubMedGoogle Scholar
  76. 76.
    Levine L, Lucci JA 3rd, Pazdrak B, Cheng JZ, Guo YS, Townsend CM Jr, Hellmich MR (2003) Bombesin stimulates nuclear factor kappa B activation and expression of proangiogenic factors in prostate cancer cells. Cancer Res 63:3495–3502PubMedGoogle Scholar
  77. 77.
    Shukla S, Maclennan GT, Marengo SR, Resnick MI, Gupta S (2005) Constitutive activation of P I3 K-Akt and NF-kappaB during prostate cancer progression in autochthonous transgenic mouse model. Prostate 64:224–239PubMedGoogle Scholar
  78. 78.
    Di Lorenzo G, Tortora G, D’Armiento FP, De Rosa G, Staibano S, Autorino R, D’Armiento M, De Laurentiis M, De Placido S, Catalano G, Bianco AR, Ciardiello F (2002) Expression of epidermal growth factor receptor correlates with disease relapse and progression to androgen-independence in human prostate cancer. Clin Cancer Res 8:3438–3444PubMedGoogle Scholar
  79. 79.
    Craft N, Shostak Y, Carey M, Sawyers CL (1999) A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med 5:280–285PubMedGoogle Scholar
  80. 80.
    Yeh S, Lin HK, Kang HY, Thin TH, Lin MF, Chang C (1999) From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc Natl Acad Sci USA 96:5458–5463PubMedGoogle Scholar
  81. 81.
    Qiu Y, Ravi L, Kung HJ (1998) Requirement of ErbB2 for signalling by interleukin-6 in prostate carcinoma cells. Nature 393:83–85PubMedGoogle Scholar
  82. 82.
    Le Page C, Koumakpayi IH, Lessard L, Mes-Masson AM, Saad F (2005) EGFR and Her-2 regulate the constitutive activation of NF-kappaB in PC-3 prostate cancer cells. Prostate 65:130–140PubMedGoogle Scholar
  83. 83.
    Papapoulos SE, Hamdy NA, van der Pluijm G (2000) Bisphosphonates in the management of prostate carcinoma metastatic to the skeleton. Cancer 88(12 Suppl):3047–3053PubMedGoogle Scholar
  84. 84.
    Jimi E, Aoki K, Saito H, D’Acquisto F, May MJ, Nakamura I, Sudo T, Kojima T, Okamoto F, Fukushima H, Okabe K, Ohya K, Ghosh S (2004) Selective inhibition of NF-kappa B blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nat Med 10:617–624PubMedGoogle Scholar
  85. 85.
    Teitelbaum S (2000) Bone resorption by osteoclasts, Science 289:504–508Google Scholar
  86. 86.
    Zhang J, Dai J, Qi Y, Lin DL, Smith P, Strayhorn C, Mizokami A, Fu Z, Westman J, Keller ET (2001) Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J Clin Invest 107:1235–1244PubMedCrossRefGoogle Scholar
  87. 87.
    Andela VB, Gordon AH, Zotalis G, Rosier RN, Goater JJ, Lewis GD, Schwarz EM, Puzas JE, O’Keefe RJ (2003) NFkappaB: a pivotal transcription factor in prostate cancer metastasis to bone. Clin Orthop Relat Res 415(Suppl):S75–S85PubMedGoogle Scholar
  88. 88.
    Iwamura M, Hellman J, Cockett AT, Lilja H, Gershagen S. (1996) Alteration of the hormonal bioactivity of parathyroid hormone-related protein (PTHrP) as a result of limited proteolysis by prostate-specific antigen. Urology 48:317–325PubMedGoogle Scholar
  89. 89.
    Kattan MW, Shariat SF, Andrews B, Zhu K, Canto E, Matsumoto K, Muramoto M, Scardino PT, Ohori M, Wheeler TM, Slawin KM (2003) The addition of interleukin-6 soluble receptor and transforming growth factor beta1 improves a preoperative nomogram for predicting biochemical progression in patients with clinically localized prostate cancer. J Clin Oncol 21:3573–3579PubMedGoogle Scholar
  90. 90.
    Chen F (2004) Endogenous inhibitors of nuclear factor-kappaB, an opportunity for cancer control. Cancer Res 64:8135–81358PubMedGoogle Scholar
  91. 91.
    Palombella VJ, Rando OJ, Goldberg AL, Maniatis T (1994) The ubiquitin-proteasome pathway is required for processing the NF-κB precursor protein and the activation of NF-κB. Cell 78:773–785PubMedGoogle Scholar
  92. 92.
    An WG, Hwang SG, Trepel JB, Blagosklonny MV (2000) Protease inhibitor-induced apoptosis: accumulation of wt 53, p21 WAF1/CIP1, and induction of apoptosis are independent markers of proteasome inhibition. Leukemia 14:1276–1283PubMedGoogle Scholar
  93. 93.
    Cusack JC Jr, Liu R, Houston M, Abendroth K, Elliott PJ, Adams J, Baldwin AS Jr (2001) Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-kappaB inhibition. Cancer Res 61:3535–3540PubMedGoogle Scholar
  94. 94.
    Huang S, Pettaway CA, Uehara H (2001) Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene 20:4188–4197PubMedGoogle Scholar
  95. 95.
    Herrmann JL, Briones F Jr, Brisbay S, Logothetis CJ, McDonnell TJ (1998) Prostate carcinoma cell death resulting from inhibition of proteasome activity is independent of functional Bcl-2 and p53. Oncogene 17:2889–2899PubMedGoogle Scholar
  96. 96.
    Hideshima T, Richardson P, Chauhan D, Palombella VJ, Elliott PJ, Adams J, Anderson KC (2001) The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 61:3071–3076PubMedGoogle Scholar
  97. 97.
    Papandreou CN, Daliani DD, Nix D, Yang H, Madden T, Wang X, Pien CS, Millikan RE, Tu SM, Pagliaro L, Kim J, Adams J, Elliott P, Esseltine D, Petrusich A, Dieringer P, Perez C, Logothetis CJ (2004) Phase I trial of the proteasome inhibitor bortezomib in patients with advanced solid tumors with observations in androgen-independent prostate cancer. J Clin Oncol 22:2108–2121PubMedGoogle Scholar
  98. 98.
    Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD, Maas J, Pien CS, Prakash S, Elliott PJ (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 59:2615–2622PubMedGoogle Scholar
  99. 99.
    Lam LT, Davis RE, Pierce J, Hepperle M, Xu Y, Hottelet M, Nong Y, Wen D, Adams J, Dang L, Staudt LM (2005) Small molecule inhibitors of IkappaB kinase are selectively toxic for subgroups of diffuse large B-cell lymphoma defined by gene expression profiling. Clin Cancer Res 11:28–40PubMedGoogle Scholar
  100. 100.
    Domingo-Domenech J, Oliva C, Rovira A, Codony-Servat J, Bosch M, Filella X, Montagut C, Tapia M, Campas C, Dang L, Rolfe M, Ross JS, Gascon P, Albanell J, Mellado B (2006) Interleukin 6, a nuclear factor-kappaB target, predicts resistance to docetaxel in hormone-independent prostate cancer and nuclear factor-kappaB inhibition by PS-1145 enhances docetaxel antitumor activity. Clin Cancer Res 12:5578–5586PubMedGoogle Scholar
  101. 101.
    Keifer JA, Guttridge DC, Ashburner BP, Baldwin AS Jr (2001) Inhibition of NF-kappa B activity by thalidomide through suppression of IkappaB kinase activity. J Biol Chem 276:22382–22387PubMedGoogle Scholar
  102. 102.
    Noguchi T, Shimazawa R, Nagasawa K (2002) Thalidomide and its analogues as cyclooxygenase inhibitors. Bioorg Med Chem Lett 54:31–38Google Scholar
  103. 103.
    Ng SS, Gutschow M, Weiss M, Hauschildt S, Teubert U, Hecker TK, Luzzio FA, Kruger EA, Eger K, Figg WD (2003) Antiangiogenic activity of N-substituted and tetrafluorinated thalidomide analogues. Cancer Res 63:3189–3194PubMedGoogle Scholar
  104. 104.
    Kumar S, Witzig TE, Rajkumar SV (2004) Thalidomid: current role in the treatment of non-plasma cell malignancies. J Clin Oncol 22:2477–2488. Erratum in: J Clin Oncol 2004 22:2973PubMedGoogle Scholar
  105. 105.
    Becker C, Fantini MC, Schramm C, Lehr HA, Wirtz S, Nikolaev A, Burg J, Strand S, Kiesslich R, Huber S, Ito H, Nishimoto N, Yoshizaki K, Kishimoto T, Galle PR, Blessing M, Rose-John S, Neurath MF (2004) TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity 21:491–501PubMedGoogle Scholar
  106. 106.
    Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, Kagnoff MF, Karin M. (2004) IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118:285–296PubMedGoogle Scholar
  107. 107.
    Barnes PJ, Karin M (1997) Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336:1066–1071PubMedGoogle Scholar
  108. 108.
    Tannock IF, Osoba D, Stockler MR, Ernst DS, Neville AJ, Moore MJ, Armitage GR, Wilson JJ, Venner PM, Coppin CM, Murphy KC (1996) Chemotherapy with mitoxantrone plus prednisone or prednisone alone for symptomatic hormone-resistant prostate cancer: a Canadian randomized trial with palliative end points. J Clin Oncol 14:1756–1764PubMedGoogle Scholar
  109. 109.
    Li Y, Sarkar FH (2002) Inhibition of nuclear factor (B activation in PC3 cells by genistein is mediated via Akt signaling pathway. Clin Cancer Res 8:2369–2377PubMedGoogle Scholar
  110. 110.
    Raffoul JJ, Wang Y, Kucuk O, Forman JD, Sarkar FH, Hillman GG (2006) Genistein inhibits radiation-induced activation of NF-kappaB in prostate cancer cells promoting apoptosis and G2/M cell cycle arrest. BMC Cancer 6:107PubMedGoogle Scholar
  111. 111.
    Li Y, Kucuk O, Hussain M, Abrams J, Cher ML, Sarkar FH (2006) Antitumor, antimetastatic activities of docetaxel are enhanced by genistein through regulation of osteoprotegerin/receptor activator of nuclear factor-kappaB (RANK)/RANK ligand/MMP-9 signaling in prostate cancer. Cancer Res 66:4816–4825PubMedGoogle Scholar
  112. 112.
    Economides AN, Carpenter LR, Rudge JS, Wong V, Koehler-Stec EM, Hartnett C, Pyles EA, Xu X, Daly TJ, Young MR, Fandl JP, Lee F, Carver S, McNay J, Bailey K, Ramakanth S, Hutabarat R, Huang TT, Radziejewski C, Yancopoulos GD, Stahl N (2003) Cytokine traps: multi-component, high-affinity blockers of cytokine action. Nat Med 9:47–52PubMedGoogle Scholar
  113. 113.
    Ni Z, Lou W, Leman ES, Gao AC (2000) Inhibition of constitutively activated Stat3 signaling pathway suppresses growth of prostate cancer cells. Cancer Res 60:1225–1228PubMedGoogle Scholar
  114. 114.
    Xi S, Gooding WE, Grandis JR (2005) In vivo antitumor efficacy of STAT3 blockade using a transcription factor decoy approach: implications for cancer therapy. Oncogene 24:970–979PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Bernard Paule
    • 3
  • Stéphane Terry
    • 1
    • 2
  • Laurence Kheuang
    • 1
    • 2
  • Pascale Soyeux
    • 1
    • 2
  • Francis Vacherot
    • 1
    • 2
  • Alexandre de la Taille
    • 1
    • 2
    • 3
    • 4
  1. 1.INSERM, Unité 841eq07, IMRB, Department of Immunology Dermatology Oncologyéquipe Carcinogénèse et Pathologie Moléculaire des Tumeurs UrologiquesCréteilFrance
  2. 2.Faculté de MédecineUniversité Paris 12CréteilFrance
  3. 3.AP-HP, Groupe Hospitalier Henri Mondor, Service d’UrologieCréteilFrance
  4. 4.INSERM U841EQ07, Department of UrologyCHU MondorCréteilFrance

Personalised recommendations