World Journal of Urology

, Volume 25, Issue 1, pp 19–30

Molecular staging of prostate cancer in the year 2007

  • Thorsten Schlomm
  • Andreas Erbersdobler
  • Martina Mirlacher
  • Guido Sauter
Topic Paper

Abstract

Numerous attempts towards improving patient management by molecular staging have been fruitless so far. No single molecular parameter is routinely analyzed in prostate cancer tissue. This may be partly due to genuine properties of prostate cancer that may make this tumor a difficult target. Furthermore, inherent logistical problems result in a shortage of prostate cancer tissue for research purposes. For the future, it can be hoped that the availability of more powerful molecular techniques in combination with better tissue archives will allow more rapid progress. Powerful DNA array and proteomics methods allow the systematic analysis of virtually all genes of a cancer on the DNA, RNA, and protein level. Although such approaches are sometimes labeled as “fishing expeditions,” it cannot be totally disregarded that the simultaneous analysis of all genes has a high likelihood of identifying significant new information. In future, one of the major scientific challenges will be the validation of several potential biomarkers in large enough and clinically well-characterized patient cohorts. In particular, studies on needle core biopsies and hormone refractory cancers are imperatively needed for investigating the natural history of the disease or to discover potential predictive markers for radiation therapy and new therapeutic target genes to answer the clinically most important questions for optimal clinical decision making in prostate cancer patients: which patients will not require local therapy? If local therapy is needed, what is the treatment of choice? What medications should be given if metastases are present?

Keywords

Prostate cancer Genes Prognosis Prediction Targeted therapy Molecular staging Microarray 

References

  1. 1.
    Petrylak DP, Tangen CM, Hussain MH, Lara PN Jr, Jones JA, Taplin ME, Burch PA, Berry D, Moinpour C, Kohli M, Benson MC, Small EJ, Raghavan D, Crawford ED (2004) Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 351:1513–1520PubMedCrossRefGoogle Scholar
  2. 2.
    Andre F, Pusztai L (2006) Molecular classification of breast cancer: implications for selection of adjuvant chemotherapy. Nat Clin Pract Oncol 3:621–632PubMedCrossRefGoogle Scholar
  3. 3.
    Bauer JJ, Sesterhenn IA, Mostofi KF, McLeod DG, Srivastava S, Moul JW (1995) p53 nuclear protein expression is an independent prognostic marker in clinically localized prostate cancer patients undergoing radical prostatectomy. Clin Cancer Res 1:1295–1300PubMedGoogle Scholar
  4. 4.
    Zellweger T, Ninck C, Bloch M, Mirlacher M, Koivisto PA, Helin HJ, Mihatsch MJ, Gasser TC, Bubendorf L (2005) Expression patterns of potential therapeutic targets in prostate cancer. Int J Cancer 113:619–628PubMedCrossRefGoogle Scholar
  5. 5.
    Kuczyk MA, Serth J, Bokemeyer C, Machtens S, Minssen A, Bathke W, Hartmann J, Jonas U (1998) The prognostic value of p53 for long-term and recurrence-free survival following radical prostatectomy. Eur J Cancer 34:679–686PubMedCrossRefGoogle Scholar
  6. 6.
    Visakorpi T, Kallioniemi OP, Heikkinen A, Koivula T, Isola J (1992) Small subgroup of aggressive, highly proliferative prostatic carcinomas defined by p53 accumulation. J Natl Cancer Inst 84:883–887PubMedCrossRefGoogle Scholar
  7. 7.
    Henke RP, Kruger E, Ayhan N, Hubner D, Hammerer P, Huland H (1994) Immunohistochemical detection of p53 protein in human prostatic cancer. J Urol 152:1297–1301PubMedGoogle Scholar
  8. 8.
    Schlomm T, Iwers L, Kirstein P, Jessen B, Mirlacher M, Milde-Langosch K, Graefen M, Haese A, Steuber T, Simon R, Huland H, Sauter G, Erbersdobler A (2006) Rare p53 alterations have high prognostic relevance in early stage prostate cancers. (submitted)Google Scholar
  9. 9.
    Kunimi K, Amano T, Uchibayashi T (1996) Point mutation of the p53 gene is an infrequent event in untreated prostate cancer. Cancer Detect Prev 20:218–222PubMedGoogle Scholar
  10. 10.
    Kubota Y, Shuin T, Uemura H, Fujinami K, Miyamoto H, Torigoe S, Dobashi Y, Kitamura H, Iwasaki Y, Danenberg K et al (1995) Tumor suppressor gene p53 mutations in human prostate cancer. Prostate 27:18–24PubMedCrossRefGoogle Scholar
  11. 11.
    Hall MC, Navone NM, Troncoso P, Pollack A, Zagars GK, von Eschenbach AC, Conti CJ, Chung LW (1995) Frequency and characterization of p53 mutations in clinically localized prostate cancer. Urology 45:470–475PubMedCrossRefGoogle Scholar
  12. 12.
    Ritter MA, Gilchrist KW, Voytovich M, Chappell RJ, Verhoven BM (2002) The role of p53 in radiation therapy outcomes for favorable-to-intermediate-risk prostate cancer. Int J Radiat Oncol Biol Phys 53:574–580PubMedCrossRefGoogle Scholar
  13. 13.
    Scherr DS, Vaughan ED Jr., Wei J, Chung M, Felsen D, Allbright R, Knudsen BS (1999) BCL-2 and p53 expression in clinically localized prostate cancer predicts response to external beam radiotherapy. J Urol 162:12–16; discussion 16–17Google Scholar
  14. 14.
    Incognito LS, Cazares LH, Schellhammer PF, Kuban DA, Van Dyk EO, Moriarty RP, Wright GL Jr, Somers KD (2000) Overexpression of p53 in prostate carcinoma is associated with improved overall survival but not predictive of response to radiotherapy. Int J Oncol 17:761–769PubMedGoogle Scholar
  15. 15.
    Rakozy C, Grignon DJ, Li Y, Gheiler E, Gururajanna B, Pontes JE, Sakr W, Wood DP Jr, Sarkar FH (1999) p53 gene alterations in prostate cancer after radiation failure and their association with clinical outcome: a molecular and immunohistochemical analysis. Pathol Res Pract 195:129–135PubMedGoogle Scholar
  16. 16.
    Rakozy C, Grignon DJ, Sarkar FH, Sakr WA, Littrup P, Forman J (1998) Expression of bcl-2, p53, and p21 in benign and malignant prostatic tissue before and after radiation therapy. Mod Pathol 11:892–899PubMedGoogle Scholar
  17. 17.
    Kaur P, Kallakury BS, Sheehan CE, Fisher HA, Kaufman RP Jr, Ross JS (2004) Survivin and Bcl-2 expression in prostatic adenocarcinomas. Arch Pathol Lab Med 128:39–43PubMedGoogle Scholar
  18. 18.
    McDonnell TJ, Troncoso P, Brisbay SM, Logothetis C, Chung LW, Hsieh JT, Tu SM, Campbell ML (1992) Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res 52:6940–6944PubMedGoogle Scholar
  19. 19.
    Apakama I, Robinson MC, Walter NM, Charlton RG, Royds JA, Fuller CE, Neal DE, Hamdy FC (1996) bcl-2 overexpression combined with p53 protein accumulation correlates with hormone-refractory prostate cancer. Br J Cancer 74:1258–1262PubMedGoogle Scholar
  20. 20.
    Colombel M, Symmans F, Gil S, O’Toole KM, Chopin D, Benson M, Olsson CA, Korsmeyer S, Buttyan R (1993) Detection of the apoptosis-suppressing oncoprotein bc1-2 in hormone-refractory human prostate cancers. Am J Pathol 143:390–400PubMedGoogle Scholar
  21. 21.
    Szostak MJ, Kaur P, Amin P, Jacobs SC, Kyprianou N (2001) Apoptosis and bcl-2 expression in prostate cancer: significance in clinical outcome after brachytherapy. J Urol 165:2126–2130PubMedCrossRefGoogle Scholar
  22. 22.
    Masuda M, Takano Y, Iki M, Asakura T, Hashiba T, Noguchi S, Hosaka M (1998) Prognostic significance of Ki-67, p53, and Bcl-2 expression in prostate cancer patients with lymph node metastases: a retrospective immunohistochemical analysis. Pathol Int 48:41–46PubMedCrossRefGoogle Scholar
  23. 23.
    Stattin P, Damber JE, Karlberg L, Nordgren H, Bergh A (1996) Bcl-2 immunoreactivity in prostate tumorigenesis in relation to prostatic intraepithelial neoplasia, grade, hormonal status, metastatic growth and survival. Urol Res 24:257–264PubMedCrossRefGoogle Scholar
  24. 24.
    Bubendorf L, Sauter G, Moch H, Jordan P, Blochlinger A, Gasser TC, Mihatsch MJ (1996) Prognostic significance of Bcl-2 in clinically localized prostate cancer. Am J Pathol 148:1557–1565PubMedGoogle Scholar
  25. 25.
    Amirghofran Z, Monabati A, Gholijani N (2005) Apoptosis in prostate cancer: bax correlation with stage. Int J Urol 12:340–345PubMedCrossRefGoogle Scholar
  26. 26.
    Revelos K, Petraki C, Gregorakis A, Scorilas A, Papanastasiou P, Tenta R, Koutsilieris M (2005) p27(kip1) and Ki-67 (MIB1) immunohistochemical expression in radical prostatectomy specimens of patients with clinically localized prostate cancer. In Vivo 19:911–920PubMedGoogle Scholar
  27. 27.
    Rubio J, Ramos D, Lopez-Guerrero JA, Iborra I, Collado A, Solsona E, Almenar S, Llombart-Bosch A (2005) Immunohistochemical expression of Ki-67 antigen, cox-2 and Bax/Bcl-2 in prostate cancer; prognostic value in biopsies and radical prostatectomy specimens. Eur Urol 48:745–751PubMedCrossRefGoogle Scholar
  28. 28.
    Borre M, Bentzen SM, Nerstrom B, Overgaard J (1998) Tumor cell proliferation and survival in patients with prostate cancer followed expectantly. J Urol 159:1609–1614PubMedCrossRefGoogle Scholar
  29. 29.
    Augustin H, Hammerer PG, Graefen M, Palisaar J, Daghofer F, Huland H, Erbersdobler A (2003) Characterisation of biomolecular profiles in primary high-grade prostate cancer treated by radical prostatectomy. J Cancer Res Clin Oncol 129:662–668PubMedCrossRefGoogle Scholar
  30. 30.
    Cheng L, Nagabhushan M, Pretlow TP, Amini SB, Pretlow TG (1996) Expression of E-cadherin in primary and metastatic prostate cancer. Am J Pathol 148:1375–1380PubMedGoogle Scholar
  31. 31.
    Patriarca C, Petrella D, Campo B, Colombo P, Giunta P, Parente M, Zucchini N, Mazzucchelli R, Montironi R (2003) Elevated E-cadherin and alpha/beta-catenin expression after androgen deprivation therapy in prostate adenocarcinoma. Pathol Res Pract 199:659–665PubMedCrossRefGoogle Scholar
  32. 32.
    Aaltomaa S, Lipponen P, Ala-Opas M, Eskelinen M, Kosma VM (1999) Alpha-catenin expression has prognostic value in local and locally advanced prostate cancer. Br J Cancer 80:477–482PubMedCrossRefGoogle Scholar
  33. 33.
    Cordon-Cardo C (1995) Mutations of cell cycle regulators. Biological and clinical implications for human neoplasia. Am J Pathol 147:545–560PubMedGoogle Scholar
  34. 34.
    Cordon-Cardo C, Koff A, Drobnjak M, Capodieci P, Osman I, Millard SS, Gaudin PB, Fazzari M, Zhang ZF, Massague J, Scher HI (1998) Distinct altered patterns of p27KIP1 gene expression in benign prostatic hyperplasia and prostatic carcinoma. J Natl Cancer Inst 90:1284–1291PubMedCrossRefGoogle Scholar
  35. 35.
    Macri E, Loda M (1998) Role of p27 in prostate carcinogenesis. Cancer Metastasis Rev 17:337–344PubMedCrossRefGoogle Scholar
  36. 36.
    Fernandez PL, Arce Y, Farre X, Martinez A, Nadal A, Rey MJ, Peiro N, Campo E, Cardesa A (1999) Expression of p27/Kip1 is down-regulated in human prostate carcinoma progression. J Pathol 187:563–566PubMedCrossRefGoogle Scholar
  37. 37.
    Cheville JC, Lloyd RV, Sebo TJ, Cheng L, Erickson L, Bostwick DG, Lohse CM, Wollan P (1998) Expression of p27kip1 in prostatic adenocarcinoma. Mod Pathol 11:324–328PubMedGoogle Scholar
  38. 38.
    Tsihlias J, Kapusta LR, DeBoer G, Morava-Protzner I, Zbieranowski I, Bhattacharya N, Catzavelos GC, Klotz LH, Slingerland JM (1998) Loss of cyclin-dependent kinase inhibitor p27Kip1 is a novel prognostic factor in localized human prostate adenocarcinoma. Cancer Res 58:542–548PubMedGoogle Scholar
  39. 39.
    Vis AN, van Rhijn BW, Noordzij MA, Schroder FH, van der Kwast TH (2002) Value of tissue markers p27(kip1), MIB-1, and CD44s for the pre-operative prediction of tumour features in screen-detected prostate cancer. J Pathol 197:148–154PubMedCrossRefGoogle Scholar
  40. 40.
    Freedland SJ, deGregorio F, Sacoolidge JC, Elshimali YI, Csathy GS, Dorey F, Reiter RE, Aronson WJ (2003) Preoperative p27 status is an independent predictor of prostate specific antigen failure following radical prostatectomy. J Urol 169:1325–1330PubMedCrossRefGoogle Scholar
  41. 41.
    Koivisto PA, Rantala I (1999) Amplification of the androgen receptor gene is associated with P53 mutation in hormone-refractory recurrent prostate cancer. J Pathol 187:237–241PubMedCrossRefGoogle Scholar
  42. 42.
    Bostwick DG, Qian J, Pacelli A, Zincke H, Blute M, Bergstralh EJ, Slezak JM, Cheng L (2002) Neuroendocrine expression in node positive prostate cancer: correlation with systemic progression and patient survival. J Urol 168:1204–1211PubMedCrossRefGoogle Scholar
  43. 43.
    Theodorescu D, Broder SR, Boyd JC, Mills SE, Frierson HF Jr (1997) Cathepsin D and chromogranin A as predictors of long-term disease specific survival after radical prostatectomy for localized carcinoma of the prostate. Cancer 80:2109–2119PubMedCrossRefGoogle Scholar
  44. 44.
    Shariff AH, Ather MH (2006) Neuroendocrine differentiation in prostate cancer. Urology 68:2–8PubMedCrossRefGoogle Scholar
  45. 45.
    Casella R, Bubendorf L, Sauter G, Moch H, Mihatsch MJ, Gasser TC (1998) Focal neuroendocrine differentiation lacks prognostic significance in prostate core needle biopsies. J Urol 160:406–410PubMedCrossRefGoogle Scholar
  46. 46.
    Bonkhoff H (2001) Neuroendocrine differentiation in human prostate cancer. Morphogenesis, proliferation and androgen receptor status. Ann Oncol 12 Suppl 2:S141–S144PubMedCrossRefGoogle Scholar
  47. 47.
    Bonkhoff H, Fixemer T (2005) Neuroendocrine differentiation in prostate cancer: an unrecognized and therapy resistant phenotype. Pathologe 26:453–460PubMedCrossRefGoogle Scholar
  48. 48.
    Wright GL Jr, Grob BM, Haley C, Grossman K, Newhall K, Petrylak D, Troyer J, Konchuba A, Schellhammer PF, Moriarty R (1996) Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy. Urology 48:326–334PubMedCrossRefGoogle Scholar
  49. 49.
    Ross JS, Sheehan CE, Fisher HA, Kaufman RP Jr, Kaur P, Gray K, Webb I, Gray GS, Mosher R, Kallakury BV (2003) Correlation of primary tumor prostate-specific membrane antigen expression with disease recurrence in prostate cancer. Clin Cancer Res 9:6357–6362PubMedGoogle Scholar
  50. 50.
    Sweat SD, Pacelli A, Murphy GP, Bostwick DG (1998) Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology 52:637–640PubMedCrossRefGoogle Scholar
  51. 51.
    Marchal C, Redondo M, Padilla M, Caballero J, Rodrigo I, Garcia J, Quian J, Boswick DG (2004) Expression of prostate specific membrane antigen (PSMA) in prostatic adenocarcinoma and prostatic intraepithelial neoplasia. Histol Histopathol 19:715–718PubMedGoogle Scholar
  52. 52.
    Liu HL, Gandour-Edwards R, Lara PN Jr, de Vere White R, LaSalle JM (2001) Detection of low level HER-2/neu gene amplification in prostate cancer by fluorescence in situ hybridization. Cancer J 7:395–403PubMedGoogle Scholar
  53. 53.
    Montironi R, Mazzucchelli R, Barbisan F, Stramazzotti D, Santinelli A, Scarpelli M, Lopez Beltran A (2006) HER2 expression and gene amplification in pT2a Gleason score 6 prostate cancer incidentally detected in cystoprostatectomies: comparison with clinically detected androgen-dependent and androgen-independent cancer. Hum Pathol 37:1137–1144PubMedCrossRefGoogle Scholar
  54. 54.
    Reese DM, Small EJ, Magrane G, Waldman FM, Chew K, Sudilovsky D (2001) HER2 protein expression and gene amplification in androgen-independent prostate cancer. Am J Clin Pathol 116:234–239PubMedCrossRefGoogle Scholar
  55. 55.
    Bubendorf L, Kononen J, Koivisto P, Schraml P, Moch H, Gasser TC, Willi N, Mihatsch MJ, Sauter G, Kallioniemi OP (1999) Survey of gene amplifications during prostate cancer progression by high-throughout fluorescence in situ hybridization on tissue microarrays. Cancer Res 59:803–806PubMedGoogle Scholar
  56. 56.
    Schlomm T, Iwers L, Mirlacher M, Graefen M, Haese A, Steuber T, Chun KH, Hellwinkel OJ, Huland H, Simon R, Sauter G, Erbersdobler A (2006 ) Low level HER2 expression is associated with rapid tumor cell proliferation and poor prognosis in prostate cancer. (submitted)Google Scholar
  57. 57.
    Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, Campos D, Maoleekoonpiroj S, Smylie M, Martins R, van Kooten M, Dediu M, Findlay B, Tu D, Johnston D, Bezjak A, Clark G, Santabarbara P, Seymour L (2005) Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 353:123–132PubMedCrossRefGoogle Scholar
  58. 58.
    Di Lorenzo G, Tortora G, D’Armiento FP, De Rosa G, Staibano S, Autorino R, D’Armiento M, De Laurentiis M, De Placido S, Catalano G, Bianco AR, Ciardiello F (2002) Expression of epidermal growth factor receptor correlates with disease relapse and progression to androgen-independence in human prostate cancer. Clin Cancer Res 8:3438–3444PubMedGoogle Scholar
  59. 59.
    Visakorpi T, Kallioniemi OP, Koivula T, Harvey J, Isola J (1992) Expression of epidermal growth factor receptor and ERBB2 (HER-2/Neu) oncoprotein in prostatic carcinomas. Mod Pathol 5:643–648PubMedGoogle Scholar
  60. 60.
    Schlomm T, Simon R, Huland H, Graefen M, Sauter G, Erbersdobler A (2007) High EGFR expression is associated with poor prognosis in radically operated prostate cancer. (submitted)Google Scholar
  61. 61.
    Schafer W, Funke PJ, Kunde D, Rausch U, Wennemuth G, Stutzer H (2006) Intensity of androgen and epidermal growth factor receptor immunoreactivity in samples of radical prostatectomy as prognostic indicator: correlation with clinical data of long-term observations. J Urol 176:532–537PubMedCrossRefGoogle Scholar
  62. 62.
    Edwards J, Traynor P, Munro AF, Pirret CF, Dunne B, Bartlett JM (2006) The role of HER1-HER4 and EGFRvIII in hormone-refractory prostate cancer. Clin Cancer Res 12:123–130PubMedCrossRefGoogle Scholar
  63. 63.
    Wilding G, Soulie P, Trump D, Das-Gupta A, Small E (2006) Results from a pilot phase I trial of gefitinib combined with docetaxel and estramustine in patients with hormone-refractory prostate cancer. Cancer 106:1917–1924PubMedCrossRefGoogle Scholar
  64. 64.
    Canil CM, Moore MJ, Winquist E, Baetz T, Pollak M, Chi KN, Berry S, Ernst DS, Douglas L, Brundage M, Fisher B, McKenna A, Seymour L (2005) Randomized phase II study of two doses of gefitinib in hormone-refractory prostate cancer: a trial of the National Cancer Institute of Canada-Clinical Trials Group. J Clin Oncol 23:455–460PubMedCrossRefGoogle Scholar
  65. 65.
    Camphausen K, Burgan W, Cerra M, Oswald KA, Trepel JB, Lee MJ, Tofilon PJ (2004) Enhanced radiation-induced cell killing and prolongation of gammaH2AX foci expression by the histone deacetylase inhibitor MS-275. Cancer Res 64:316–321PubMedCrossRefGoogle Scholar
  66. 66.
    Chinnaiyan P, Vallabhaneni G, Armstrong E, Huang SM, Harari PM (2005) Modulation of radiation response by histone deacetylase inhibition. Int J Radiat Oncol Biol Phys 62:223–229PubMedCrossRefGoogle Scholar
  67. 67.
    Yacoub A, McKinstry R, Hinman D, Chung T, Dent P, Hagan MP (2003) Epidermal growth factor and ionizing radiation up-regulate the DNA repair genes XRCC1 and ERCC1 in DU145 and LNCaP prostate carcinoma through MAPK signaling. Radiat Res 159:439–452PubMedCrossRefGoogle Scholar
  68. 68.
    Toulany M, Kasten-Pisula U, Brammer I, Wang S, Chen J, Dittmann K, Baumann M, Dikomey E, Rodemann HP (2006) Blockage of epidermal growth factor receptor-phosphatidylinositol 3-kinase-AKT signaling increases radiosensitivity of K-RAS mutated human tumor cells in vitro by affecting DNA repair. Clin Cancer Res 12:4119–4126PubMedCrossRefGoogle Scholar
  69. 69.
    Hagan M, Yacoub A, Dent P (2004) Ionizing radiation causes a dose-dependent release of transforming growth factor alpha in vitro from irradiated xenografts and during palliative treatment of hormone-refractory prostate carcinoma. Clin Cancer Res 10:5724–5731PubMedCrossRefGoogle Scholar
  70. 70.
    Li R, Heydon K, Hammond ME, Grignon DJ, Roach M III, Wolkov HB, Sandler HM, Shipley WU, Pollack A (2004) Ki-67 staining index predicts distant metastasis and survival in locally advanced prostate cancer treated with radiotherapy: an analysis of patients in radiation therapy oncology group protocol 86–10. Clin Cancer Res 10:4118–4124PubMedCrossRefGoogle Scholar
  71. 71.
    Scalzo DA, Kallakury BV, Gaddipati RV, Sheehan CE, Keys HM, Savage D, Ross JS (1998) Cell proliferation rate by MIB-1 immunohistochemistry predicts postradiation recurrence in prostatic adenocarcinomas. Am J Clin Pathol 109:163–168PubMedGoogle Scholar
  72. 72.
    Khoo VS, Pollack A, Cowen D, Joon DL, Patel N, Terry NH, Zagars GK, von Eschenbach AC, Meistrich ML, Troncoso P (1999) Relationship of Ki-67 labeling index to DNA-ploidy, S-phase fraction, and outcome in prostate cancer treated with radiotherapy. Prostate 41:166–172PubMedCrossRefGoogle Scholar
  73. 73.
    Cowen D, Troncoso P, Khoo VS, Zagars GK, von Eschenbach AC, Meistrich ML, Pollack A (2002) Ki-67 staining is an independent correlate of biochemical failure in prostate cancer treated with radiotherapy. Clin Cancer Res 8:1148–1154PubMedGoogle Scholar
  74. 74.
    Ikonen T, Palvimo JJ, Kallio PJ, Reinikainen P, Janne OA (1994) Stimulation of androgen-regulated transactivation by modulators of protein phosphorylation. Endocrinology 135:1359–1366PubMedCrossRefGoogle Scholar
  75. 75.
    Huang A, Gandour-Edwards R, Rosenthal SA, Siders DB, Deitch AD, White RW (1998) p53 and bcl-2 immunohistochemical alterations in prostate cancer treated with radiation therapy. Urology 51:346–351PubMedCrossRefGoogle Scholar
  76. 76.
    Rosser CJ, Reyes AO, Vakar-Lopez F, Levy LB, Kuban DA, Hoover DC, Lee AK, Pisters LL (2003) Bcl-2 is significantly overexpressed in localized radio-recurrent prostate carcinoma, compared with localized radio-naive prostate carcinoma. Int J Radiat Oncol Biol Phys 56:1–6PubMedCrossRefGoogle Scholar
  77. 77.
    Mackey TJ, Borkowski A, Amin P, Jacobs SC, Kyprianou N (1998) bcl-2/bax ratio as a predictive marker for therapeutic response to radiotherapy in patients with prostate cancer. Urology 52:1085–1090PubMedCrossRefGoogle Scholar
  78. 78.
    Prendergast NJ, Atkins MR, Schatte EC, Paulson DF, Walther PJ (1996) p53 immunohistochemical and genetic alterations are associated at high incidence with post-irradiated locally persistent prostate carcinoma. J Urol 155:1685–1692PubMedCrossRefGoogle Scholar
  79. 79.
    Rigaud J, Tiguert R, Decobert M, Hovington H, Latulippe E, Laverdiere J, Larue H, Lacombe L, Fradet Y (2004) Expression of p21 cell cycle protein is an independent predictor of response to salvage radiotherapy after radical prostatectomy. Prostate 58:269–276PubMedCrossRefGoogle Scholar
  80. 80.
    Kyprianou N, English HF, Isaacs JT (1990) Programmed cell death during regression of PC-82 human prostate cancer following androgen ablation. Cancer Res 50:3748–3753PubMedGoogle Scholar
  81. 81.
    Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, Rosenfeld MG, Sawyers CL (2004) Molecular determinants of resistance to antiandrogen therapy. Nat Med 10:33–39PubMedCrossRefGoogle Scholar
  82. 82.
    Taplin ME, Rajeshkumar B, Halabi S, Werner CP, Woda BA, Picus J, Stadler W, Hayes DF, Kantoff PW, Vogelzang NJ, Small EJ (2003) Androgen receptor mutations in androgen-independent prostate cancer: Cancer and Leukemia Group B Study 9663. J Clin Oncol 21:2673–2678PubMedCrossRefGoogle Scholar
  83. 83.
    Koivisto P, Hyytinen E, Palmberg C, Tammela T, Visakorpi T, Isola J, Kallioniemi OP (1995) Analysis of genetic changes underlying local recurrence of prostate carcinoma during androgen deprivation therapy. Am J Pathol 147:1608–1614PubMedGoogle Scholar
  84. 84.
    Comuzzi B, Lambrinidis L, Rogatsch H, Godoy-Tundidor S, Knezevic N, Krhen I, Marekovic Z, Bartsch G, Klocker H, Hobisch A, Culig Z (2003) The transcriptional co-activator cAMP response element-binding protein-binding protein is expressed in prostate cancer and enhances androgen- and anti-androgen-induced androgen receptor function. Am J Pathol 162:233–241PubMedGoogle Scholar
  85. 85.
    Bakin RE, Gioeli D, Sikes RA, Bissonette EA, Weber MJ (2003) Constitutive activation of the Ras/mitogen-activated protein kinase signaling pathway promotes androgen hypersensitivity in LNCaP prostate cancer cells. Cancer Res 63:1981–1989PubMedGoogle Scholar
  86. 86.
    Craft N, Shostak Y, Carey M, Sawyers CL (1999) A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med 5:280–285PubMedCrossRefGoogle Scholar
  87. 87.
    Yeh S, Lin HK, Kang HY, Thin TH, Lin MF, Chang C (1999) From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc Natl Acad Sci USA 96:5458–5463PubMedCrossRefGoogle Scholar
  88. 88.
    Rimler A, Culig Z, Levy-Rimler G, Lupowitz Z, Klocker H, Matzkin H, Bartsch G, Zisapel N (2001) Melatonin elicits nuclear exclusion of the human androgen receptor and attenuates its activity. Prostate 49:145–154PubMedCrossRefGoogle Scholar
  89. 89.
    Nesslinger NJ, Shi XB, deVere White RW (2003) Androgen-independent growth of LNCaP prostate cancer cells is mediated by gain-of-function mutant p53. Cancer Res 63:2228–2233PubMedGoogle Scholar
  90. 90.
    Fizazi K, Martinez LA, Sikes CR, Johnston DA, Stephens LC, McDonnell TJ, Logothetis CJ, Trapman J, Pisters LL, Ordonez NG, Troncoso P, Navone NM (2002) The association of p21((WAF-1/CIP1)) with progression to androgen-independent prostate cancer. Clin Cancer Res 8:775–781PubMedGoogle Scholar
  91. 91.
    Baretton GB, Klenk U, Diebold J, Schmeller N, Lohrs U (1999) Proliferation- and apoptosis-associated factors in advanced prostatic carcinomas before and after androgen deprivation therapy: prognostic significance of p21/WAF1/CIP1 expression. Br J Cancer 80:546–555PubMedCrossRefGoogle Scholar
  92. 92.
    Stubbs AP, Abel PD, Golding M, Bhangal G, Wang Q, Waxman J, Stamp GW, Lalani EN (1999) Differentially expressed genes in hormone refractory prostate cancer: association with chromosomal regions involved with genetic aberrations. Am J Pathol 154:1335–1343PubMedGoogle Scholar
  93. 93.
    Myers RB, Oelschlager DK, Weiss HL, Frost AR, Grizzle WE (2001) Fatty acid synthase: an early molecular marker of progression of prostatic adenocarcinoma to androgen independence. J Urol 165:1027–1032PubMedCrossRefGoogle Scholar
  94. 94.
    Pizer ES, Pflug BR, Bova GS, Han WF, Udan MS, Nelson JB (2001) Increased fatty acid synthase as a therapeutic target in androgen-independent prostate cancer progression. Prostate 47:102–110PubMedCrossRefGoogle Scholar
  95. 95.
    Schlomm T, Luebke AM, Sultmann H, Hellwinkel OJ, Sauer U, Poustka A, David KA, Chun FK, Haese A, Graefen M, Erbersdobler A, Huland H (2005) Extraction and processing of high quality RNA from impalpable and macroscopically invisible prostate cancer for microarray gene expression analysis. Int J Oncol 27:713–720PubMedGoogle Scholar
  96. 96.
    Rubin MA, Zhou M, Dhanasekaran SM, Varambally S, Barrette TR, Sanda MG, Pienta KJ, Ghosh D, Chinnaiyan AM (2002) alpha-Methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. Jama 287:1662–1670PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Thorsten Schlomm
    • 1
  • Andreas Erbersdobler
    • 2
  • Martina Mirlacher
    • 2
  • Guido Sauter
    • 2
  1. 1.Martini-Clinic, Prostate Cancer CenterUniversity Medical Center Hamburg–EppendorfHamburgGermany
  2. 2.Department of PathologyUniversity Medical Center Hamburg–EppendorfHamburgGermany

Personalised recommendations