World Journal of Urology

, Volume 24, Issue 4, pp 418–422 | Cite as

Clinical decisions for treatment of different staged bladder cancer based on multitarget fluorescence in situ hybridization assays?

  • F. Steffen KrauseEmail author
  • Anita Rauch
  • Karl M. Schrott
  • Dirk G. Engehausen
Original Article


Non-invasive methods for detecting genetic alterations of bladder cancer are increasingly becoming the focus of attention as diagnostic tools. The fluorescence in situ hybridization we performed to detect genetic alterations of chromosomes 3, 7, 9p21, and 17 (UroVysion Test) showed very high sensitivity, higher even than cytology, in detecting bladder tumors of varying differentiation (pTa-pT4). The use of this test in everyday clinical urology can be a very useful decision aid in treating problem cases. A pT1G3 bladder carcinoma in the presence of multichromosomal alterations should be treated as a muscle-invasive pT2 tumor. Other superficial bladder tumors (pTaGI-III, pT1GI-II) with negative histopathology in follow-up and positive FISH analysis with the UroVysion Test should have bladder mapping performed again. Although FISH analysis is currently the most sensitive marker for bladder tumors, the elaborate handling, the cost of the DNA probes and the laboratory equipment required, limit the use of this method in the urologist’s everyday routine.


Bladder cancer Multitarget FISH Diagnostical tool 


  1. 1.
    Arbeitsgemeinschaft Bevölkerungsbezogener Krebsregister in Deutschland. Krebs in Deutschland: Häufigkeiten und Trends; 3. Auflg 2002; 77–79Google Scholar
  2. 2.
    Kühn R, Schrott KM, Birkenhake S, Sauer R (1997) Radiochemotherapie als blasenerhaltendes Therapieverfahren. Onkologe 3:272–277CrossRefGoogle Scholar
  3. 3.
    Cremer TH, Jauch A, Ried TH, Schock E, Lengauer CH, Cremer M, Speicher MR (1995) Fluoreszenz-in-situ-Hybridisierung. Dt Aerzteblatt 22:1177–1185Google Scholar
  4. 4.
    Hopman AH, Poddighe PJ, Smeets AW, Moesker O, Beck JL, Vooijs GP, Rameakers FC (1989) Detection of numerical chromosome aberrations in bladder cancer by in situ hybridisation. Am J Pathol 135:1105–1117PubMedGoogle Scholar
  5. 5.
    Hopman AH, Moesker O, Smeets AW, Pauwels RPE, Vooijs GP, Rameakers FC (1991) Numerical chromosome 1, 7, 9, and 11 aberrations in bladder cancer detected by in situ hybridisation. Cancer Res 51:644–651PubMedGoogle Scholar
  6. 6.
    Mayall BH (1991) Centromeric copy number of chromosome 7 is strongly correlated with tumor grade and labelling index in human bladder cancer. Cancer Res 51:3807–3813PubMedGoogle Scholar
  7. 7.
    Rauch A (2002) Epithelial cells from buccal smears and urine. In: Rautenstrauß B, Liehr T (eds) Fish Technology, Springer, Berlin Heidelberg New York, pp 97–108Google Scholar
  8. 8.
    Hopman AHN, Ramaekers FCS, Raap AK, Beck JLM, Devilee P, Van der Ploeg M, Vooijs GP (1988) In situ hybridization as a tool to study numerical chromosome aberrations in solid bladder tumors. Histochemistry 89:307–316PubMedCrossRefGoogle Scholar
  9. 9.
    Moore DH, Epstein I, Reeder J, Wheeless L, Waldamn FM (1996) Interlaboratory variability in fluorescence in situ hybridization analysis. Cytometry 25:125–132PubMedCrossRefGoogle Scholar
  10. 10.
    Halling KC, King W, Sokolova IA, Meyer RG, Burkhardt HM, Hallind AC, Cheville JC, Sebo TJ, Ramakumar S, Stewart CS, Pankratz S, O`Kane DJ, Seelig SA, Lieber MM, Jenkins RB (2000) A comparison of cytology and fluorescence in situ hybridization for the detection of urothelial carcinoma. J Urol 164(5):1768–1775PubMedCrossRefGoogle Scholar
  11. 11.
    Nelde HJ, Krause FS, Feil G, Wechsel HW, Bichler KH (1988) Urin-Zytologie beim Harnblasenkarzinom. In: Bichler KH et al. (eds) Diagnostik und Therapie des Harnblasenkarzinoms. Einhorn-Presse Verlag pp 44–55Google Scholar
  12. 12.
    Mian C, Lodde M, Comploj E, Negri G, Egarter-Vigl E, Lusuardi L, Palermo S, Marberger M, Pycha A (2003) Liquid-based cytology as a tool for the performance of uCyt + TM and UroVysion® Multicolor-FISH in the detection of urothelial carcinoma. Cytopathology 14(6):338–342PubMedCrossRefGoogle Scholar
  13. 13.
    Skacel M, Fahmy M, Brainard JA, Pettay JD, Biscotti CV, Liou LS, Procop GW, Jones JS, Ulchaker J, Zippe CD, Tubbs RR (2003) Multitarget fluorescence in situ hybridisation assay detects transitional cell carcinoma in the majority of patients with bladder cancer and atypical or negative urine cytology. J Urol 169(6):2101–2105PubMedCrossRefGoogle Scholar
  14. 14.
    Veeramachaneni R, Nordberg NL, Shi R, Herrera GA, Turbat-Herrera EA (2003) Evaluation of fluorescence in situ hybridisation as an ancillary tool to urine cytology in diagnosing urothelial carcinoma. Diagn Cytopathol 28(6):301–307PubMedCrossRefGoogle Scholar
  15. 15.
    Halling KC, King W, Sokolova IA, Karnes RJ, Meyer RG, Powell EL, Sebo TJ, Cheville JC, Clayton AC, Krajnik KL, Ebert TA, Nelson RE, Burkhardt HM, Ramakumar S, Stewart CS, Pankratz VS, Lieber MM, Blute ML, Zincke H, Seeling SA, Jenkins RB, O`Kane DJ (2002) A comparison of BTA stat., hemoglobin dipstick, telomerase and Vysis UroVysion assays for the detection of urothelial carcinoma in urine. J Urol 167(5):2001–2006PubMedCrossRefGoogle Scholar
  16. 16.
    Sarosdy MF, Schellhammer P, Bokinsky G, Kahn P, Chao R, Yore L, Zadra J, Burzon D, Osher G, Bridge JA, Anderson S, Johansson SL, Lieber M, Soloway M, Flom K (2002) Clinical evaluation of multi-target fluorescent in situ hybridisation assay for detection of bladder cancer. J Urol 168(5):1950–1954PubMedCrossRefGoogle Scholar
  17. 17.
    Bubendorf L, Grilli B, Sauter G, Mihatsch MJ, Gasser TC, Dalquen P (2001) Multiprobe FISH for enhanced detection of bladder cancer in voided urin specimens and bladder washings. Am J Clin Pathol 116(1):79–86PubMedCrossRefGoogle Scholar
  18. 18.
    Dalquen P, Kleiber B, Grilli B, Herzog M, Bubendorf L, Oberholzer M (2002) DNA image cytometry and fluorescence in situ hybridization for noninvasive detection of urothelial tumors in voided urine. Cancer 96(6):374–379PubMedCrossRefGoogle Scholar
  19. 19.
    Kruger S, Mess F, Bohle A, Feller AC (2003) Numerical aberrations of chromosome 17 and the 9p21 locus are independent predictors of tumor recurrence in non-invasive transitional cell carcinoma of the urinary bladder. Int J Urol 23(1):41–48Google Scholar
  20. 20.
    Krause FS, Feil G, Beiter T, Pressler H, Schrott KM, Bichler KH (2004) Examinations of tumorigenesis of precursor lesions in bladder cancer by in situ hybridisation. Urol Int 72:118–222PubMedCrossRefGoogle Scholar
  21. 21.
    Gardner SN, Tucker JD (2002) The cellular lethality of radiation-induced chromosome translocations in human lymphocytes. Radiat Res 157(5):539–552PubMedCrossRefGoogle Scholar
  22. 22.
    Roy D, Calaf G, Hei TK (2001) Frequent allelic imbalances on chromosome 6 and 17 correlate with radiation-induced neoplastic transformation of human breast epithelial cells. Carcinogenesis 22(10):1685–1692PubMedCrossRefGoogle Scholar
  23. 23.
    Harms-Ringdahl M (1998) Some aspects on radiation transmissible genomic instability. Mutat Res 404(1–2):27–33PubMedGoogle Scholar
  24. 24.
    Halling KC (2003) Vysis UroVysion for the detection of urothelial carcinoma. Expert Rev Mol Diagn 3(4):507–519PubMedCrossRefGoogle Scholar
  25. 25.
    Skacel M, Pettay JD, Tsiftsakis EK, Procop GW, Biscotti CV, Tubbs RR (2001) Validation of multicolour interphase fluorescence in situ hybridisation assay for detection of transitional cell carcinoma on fresh and archival thin-layer, liquid-based cytology slides. Anal Quant Cytol Histol 23(6):381–387PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • F. Steffen Krause
    • 1
    Email author
  • Anita Rauch
    • 2
  • Karl M. Schrott
    • 1
  • Dirk G. Engehausen
    • 1
  1. 1.Department of UrologyFriedrich-Alexander UniversityErlangen-NurembergGermany
  2. 2.Institute of Human GeneticsFriedrich-Alexander University Erlangen-NurembergGermany

Personalised recommendations