World Journal of Urology

, Volume 23, Issue 3, pp 166–174 | Cite as

Cell-based vaccines for renal cell carcinoma: genetically-engineered tumor cells and monocyte-derived dendritic cells

  • Bernhard FrankenbergerEmail author
  • Sybille Regn
  • Christiane Geiger
  • Elfriede Noessner
  • Christine S. Falk
  • Heike Pohla
  • Miran Javorovic
  • Tobias Silberzahn
  • Susanne Wilde
  • Alexander Buchner
  • Michael Siebels
  • Ralph Oberneder
  • Gerald Willimsky
  • Antonio Pezzutto
  • Thomas Blankenstein
  • Dolores J. Schendel
Topic Paper


Initial vaccine developments for renal cell carcinoma (RCC) have concentrated on cell-based approaches in which tumor cells themselves provide mixtures of unknown tumor-associated antigens as immunizing agents. Antigens derived from autologous tumors can direct responses to molecular composites characteristic of individual tumors, whereas antigens derived from allogeneic tumor cells must be commonly shared by RCC. Three types of cell-based vaccine for RCC have been investigated: isolated tumor cell suspensions, gene modified tumor cells and dendritic cells (DCs) expressing RCC-associated antigens. Approaches using genetic modification of autologous RCC have included ex vivo modification of tumor cells or modification of tumors in vivo. We have used gene-modification of allogeneic tumor cell lines to create generic RCC vaccines. More recently, emphasis has shifted to the use of DCs as cell-based vaccines for RCC. DCs have moved to a position of central interest because of their excellent stimulatory capacity, combined with their ability to process and present antigens to both naive CD4 and CD8 cells. The long impasse in identifying molecular targets for specific immunotherapy of RCC is now rapidly being overcome through the use of tools and information emerging from human genome research. Identification of candidate molecules expressed by RCC using cDNA arrays, combined with protein arrays and identification of peptides presented by MHC molecules, allow specific vaccines to be tailored to the antigenic profile of individual tumors, providing the basis for development of patient-specific vaccines.


Immunotherapy Gene therapy Tumor cell vaccines Dendritic cells Renal cell carcinoma 



This work was supported by grants of the German Research Council (Ho 1596/3-2; SFB455 and SFB571), the EU 6th Framework Programme (LSHB-CT-2004-503319), and the German Federal Ministry for Education, Research and Science (DLR 01 GE 9624/1; 01KV9911)


  1. 1.
    Mumberg D, Wick M, Schreiber H (1996) Unique tumor antigens redefined as mutant tumor-specific antigens. Semin Immunol 8:289–293CrossRefPubMedGoogle Scholar
  2. 2.
    Schendel DJ, Gansbacher B, Oberneder R et al. (1993) Tumor-specific lysis of human renal cell carcinomas by tumor-infiltrating lymphocytes. I. HLA-A2-restricted recognition of autologous and allogeneic tumor lines. J Immunol 151:4209–4220PubMedGoogle Scholar
  3. 3.
    Heiser A, Maurice MA, Yancey DR, Coleman DM, Dahm P, Vieweg J (2001) Human dendritic cells transfected with renal RNA stimulate polyclonal T-cell responses against antigens expressed by primary and metastatic tumors. Cancer Res 61:3388–3393PubMedGoogle Scholar
  4. 4.
    Kurokawa T, Oelke M, Mackensen A (2001) Induction and clonal expansion of tumor-specific cytotoxic T lymphocytes from renal cell carcinoma patients after stimulation with autologous dendritic cells loaded with tumor cells. Int J Cancer 91:749–756CrossRefPubMedGoogle Scholar
  5. 5.
    Grunebach F, Muller MR, Nencioni A, Brossart P (2003) Delivery of tumor-derived RNA fort the induction of cytotoxic T-lymphocytes. Gene Ther 10:367–376CrossRefPubMedGoogle Scholar
  6. 6.
    Su Z, Dannull J, Reiser A, Yancey D, Pruitt S, Madden J, Coleman D, Niedzwiecki D, Gilboa E, Vieweg J (2003) Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells. Cancer Res 63:2127–2133PubMedGoogle Scholar
  7. 7.
    Brossart P, Stuhler G, Flad T, Stevanovic S, Rammensee HG, Kanz L, Brugger W (1998) Her-2/neu-derived peptides are tumor-associated antigens expressed by human renal cell and colon carcinoma lines and are recognized by in vitro induced specific cytotoxic T lymphocytes. Cancer Res 58:732–736PubMedGoogle Scholar
  8. 8.
    Höltl L, Zelle-Reiser C, Gander H, Papesh C, Ramoner R, Bartsch G, Rogatsch H, Barsoum AL, Coggin JHJr, Thurnher M (2002) Immunotherapy of metastatic renal cell carcinoma with tumor lysate-pulsed autologous dendritic cells. Clin Cancer Res 8:3369–3376PubMedGoogle Scholar
  9. 9.
    Weinschenk T, Gouttefangeas C, Schirle M, Obermayr F, Walter S, Schoor O, Kurek R, Loeser W, Bichler KH, Wernet D, Stevanovic S, Rammensee HG (2002) Integrated functional genomics approach for the design of patient-individual antitumor vaccines. Cancer Res 62:5818–5827PubMedGoogle Scholar
  10. 10.
    Pantuck AJ, Zeng G, Belldegrun A, Figlin RA (2003) Pathobiology, prognosis, and targeted therapy for renal cell carcinoma: exploiting the hypoxia-induced pathway. Clin Cancer Res 9:4641–4652PubMedGoogle Scholar
  11. 11.
    Galligioni E, Quaia M, Merlo A, Carbone A, Spada A, Favaro D, Santarosa M, Sacco C, Talamini R (1996) Adjuvant immunotherapy treatment of renal carcinoma patients with autologous tumor cells and bacillus Calmette-Guerin: five-year results of a prospective randomized study. Cancer 77:2560–2566CrossRefPubMedGoogle Scholar
  12. 12.
    Jocham D, Richter A, Hoffmann L, Iwig K, Fahlenkamp D, Zakrzewski G, Schmitt E, Dannenberg T, Lehmacher W, Von Wietersheim J, Doehn C (2004) Adjuvant autologous renal tumour cell vaccine and risk of tumour progression in patients with renal-cell carcinoma after radical nephrectomy: phase III, randomised controlled trial. Lancet 363:594–599CrossRefPubMedGoogle Scholar
  13. 13.
    Fenton RG, Steis RG, Madara K, Zea AH, Ochoa AC, Janik JE, Smith JW2nd, Gause BL, Sharfman WH, Urba WJ, Hanna MG, DeJager RL, Coyne MX, Crouch RD, Gray P, Beveridge J, Creekmore SP, Holmlund J, Curti BD, Sznol M, Longo DL (1996) A phase I randomized study of subcutaneous adjuvant IL-2 in combination with an autologous tumor vaccine in patients with advanced renal cell carcinoma. J Immunother Emphasis Tumor Immunol 19:364–374PubMedGoogle Scholar
  14. 14.
    Nabel GJ (2004) Genetic, cellular and immune approaches to disease therapy: past and future. Nat Med 10:135–141CrossRefPubMedGoogle Scholar
  15. 15.
    Simons JW, Jaffee EM, Weber CE, Levitsky HI, Nelson WG, Carducci MA, Lazenby AJ, Cohen LK, Finn CC, Clift SM, Hauda KM, Beck LA, Leiferman KM, Owens AHJr, Piantadosi S, Dranoff G, Mulligan RC, Pardoll DM, Marshall FF (1997) Bioactivity of autologous irradiated renal cell carcinoma vaccines generated by ex vivo granulocyte-macrophage colony-stimulating factor gene transfer. Cancer Res 57:1537–1546PubMedGoogle Scholar
  16. 16.
    Chen L, Ashe S, Brady WA et al. (1992) Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 71:1093–1102PubMedGoogle Scholar
  17. 17.
    Townsend SE, Allison JP (1993) Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science 259:368–370PubMedGoogle Scholar
  18. 18.
    Jung D, Hilmes C, Knuth A, Jaeger E, Huber C, Seliger B (1999) Gene transfer of the co-stimulatory molecules B7-1 and B7-2 enhances the immunogenicity of human renal cell carcinoma to a different extent. Scand J Immunol 50:242–249CrossRefPubMedGoogle Scholar
  19. 19.
    Schendel DJ, Frankenberger B, Jantzer P et al. (2000) Expression of B7.1 (CD80) in a renal cell carcinoma line allows expansion of tumor-associated cytotoxic T lymphocytes in the presence of an alloresponse. Gene Ther 7:2007–2014CrossRefPubMedGoogle Scholar
  20. 20.
    Sharpe AH, Freeman GJ (2002) The B7-CD28 superfamily. Nat Rev Immunol 2:116–126CrossRefPubMedGoogle Scholar
  21. 21.
    Antonia SJ, Seigne J et al. (2002) Phase I trial of a B7-1 (CD80) gene modified autologous tumor cell vaccine in combination with systemic interleukin-2 in patients with metastatic renal cell carcinoma. J Urol 167:1995–2000CrossRefPubMedGoogle Scholar
  22. 22.
    Jantzer P, Schendel DJ (1998) Human renal cell carcinoma antigen-specific CTLs: antigen-driven selection and long-term persistence in vivo. Cancer Res 58:3078–3086PubMedGoogle Scholar
  23. 23.
    Schendel DJ, Oberneder R, Falk CS et al. (1997) Cellular and molecular analyses of MHC restricted and non-MHC-restricted effector cells recognizing renal cell carcinomas: problems and perspectives for immunotherapy. J Mol Med 75:400–413CrossRefPubMedGoogle Scholar
  24. 24.
    Falk CS, Noessner E, Weiss EH, Schendel DJ (2002) Retaliation against tumor cells showing aberrant HLA expression using lymphokine activated killer-derived T cells. Cancer Res 62:480–487PubMedGoogle Scholar
  25. 25.
    Schleypen JS, Von Geldern M, Weiss EH et al. (2003) Renal cell carcinoma-infiltrating natural killer cells express differential repertoires of activating and inhibitory receptors and are inhibited by specific HLA class I allotypes. Int J Cancer 106:905–912CrossRefPubMedGoogle Scholar
  26. 26.
    Dudley A (2002) A stimulating presentation. Nat Biotech 20:125–126CrossRefGoogle Scholar
  27. 27.
    Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F, Martelli MF, Velardi A (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295:2097–2100CrossRefPubMedGoogle Scholar
  28. 28.
    Barber DF, Faure M, Long EO (2004) LFA-1 contributes an early signal for NK cell cytotoxicity. J Immunol 173:3653–3659PubMedGoogle Scholar
  29. 29.
    Parham P, McQueen KL (2003) Alloreactive killer cells: hindrance and help for haematopoietic transplants. Nat Rev Immunol 3:108–122CrossRefPubMedGoogle Scholar
  30. 30.
    Moretta L, Moretta A (2004) Unravelling natural killer cell function: triggering and inhibitory human NK receptors. EMBO J 23:255–259CrossRefPubMedGoogle Scholar
  31. 31.
    Vivier E, Anfossi N (2004) Inhibitory NK-cell receptors on T cells: witness of the past, actors of the future. Nat Rev Immunol 4:190–198CrossRefPubMedGoogle Scholar
  32. 32.
    Raulet DH (2003) Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 3:781–790CrossRefPubMedGoogle Scholar
  33. 33.
    Falk CS, Steinle A, Schendel DJ (1995) Expression of HLA-C molecules confers target cell resistance to some non-major histocompatibility complex-restricted T cells in a manner analogous to allospecific natural killer cells. J Exp Med 182:1005–1018CrossRefPubMedGoogle Scholar
  34. 34.
    Falk CS, Nossner E, Frankenberger B, Schendel DJ (2000) Non-MHC-restricted CD4+ T lymphocytes are regulated by HLA-Cw7-mediated inhibition. Hum Immunol 61:1219–1232CrossRefPubMedGoogle Scholar
  35. 35.
    Noessner E, Falk CS, Schendel DJ (2003) Interferon alpha and gamma differentially alter the susceptibility of tumor cells to lysis by MHC-restricted and non-MHC-restricted cytotoxic effector cells. In: Hiddemann W, Büchner T, Ritter J, Unterhalt M, Haferlach T (eds) Acute leukemias IX. Springer, Berlin Heidelberg, ()pp 497–503Google Scholar
  36. 36.
    Schendel DJ, Falk CS, Nossner E, Maget B, Kressenstein S, Urlinger S, Tampe R, Gansbacher B (2000) Gene transfer of human interferon gamma complementary DNA into a renal cell carcinoma line enhances MHC-restricted cytotoxic T lymphocyte recognition but suppresses non-MHC-restricted effector cell activity. Gene Ther 7:950–959CrossRefPubMedGoogle Scholar
  37. 37.
    Grewal IS, Flavell RA (1998) CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol 16:111–135CrossRefPubMedGoogle Scholar
  38. 38.
    Jung D, Jaeger E, Cayeux S, Blankenstein T, Hilmes C, Karbach J, Moebius U, Knuth A, Huber C, Seliger B (1998) Strong immunogenic potential of a B7 retroviral expression vector: generation of HLA-B7-restricted CTL response against selectable marker genes. Hum Gene Ther 9:53–62PubMedGoogle Scholar
  39. 39.
    Frankenberger B, Pohla H, Noessner E,Willimsky G, Papier B, Pezzutto A, Kopp J, Oberneder R, Blankenstein T, Schendel DJ (2005) Influence of CD80, IL-2 and IL-7 expression in human renal cell carcinoma on the expansion, function and survival of tumor-specific cytotoxic T lymphocytes. Clin Cancer Res 11:1733-1742PubMedGoogle Scholar
  40. 40.
    Steinman RM, Dhodapkar M (2001) Active immunization against cancer with dendritic cells: the near future. Int J Cancer 94:459–473CrossRefPubMedGoogle Scholar
  41. 41.
    Mulders P, Tso CL, Gitlitz B, Kaboo R, Hinkel A, Frand S, Kiertscher S, Roth MD, DeKernion J, Figlin R, Belldegrun A (1999) Presentation of renal tumor antigens by human dendritic cells activates tumor-infiltrating lymphocytes against autologous tumor: implications for live kidney cancer vaccines. Clin Cancer Res 5:445–454PubMedGoogle Scholar
  42. 42.
    Marten A, Flieger D, Renoth S, Weineck S, Albers P, Compes M, Schottker B, Ziske C, Engelhart S, Hanfland P, Krizek L, Faber C, Von Ruecker A, Muller S, Sauerbruch T, Schmidt-Wolf IG (2002) Therapeutic vaccination against metastatic renal cell carcinoma by autologous dendritic cells: preclinical results and outcome of a first clinical phase I/II trial. Cancer Immunol Immunother 51:637–644CrossRefPubMedGoogle Scholar
  43. 43.
    Kugler A, Stuhler G, Walden P, Zoller G, Zobywalski A, Brossart P, Trefzer U, Ullrich S, Muller CA, Becker V, Gross AJ, Hemmerlein B, Kanz L, Muller GA, Ringert RH (2000) Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nat Med 6:332–336CrossRefPubMedGoogle Scholar
  44. 44.
    Kugler A, Stuhler G, Walden P, Zoller G, Zobywalski A, Brossart P, Trefzer U, Ullrich S, Muller CA, Becker V, Gross AJ, Hemmerlein B, Kanz L, Muller GA, Ringert RH (2003) Retraction: regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nat Med 9:1221PubMedGoogle Scholar
  45. 45.
    Marten A, Renoth S, Heinicke T, Albers P, Pauli A, Mey U, Caspari R, Flieger D, Hanfland P, Von Ruecker A, Eis-Hubinger AM, Muller S, Schwaner I, Lohmann U, Heylmann G, Sauerbruch T, Schmidt-Wolf IG (2003) Allogeneic dendritic cells fused with tumor cells: preclinical results and outcome of a clinical phase I/II trial in patients with metastatic renal cell carcinoma. Hum Gene Ther 14:483–494CrossRefPubMedGoogle Scholar
  46. 46.
    Santini SM, Lapenta C, Logozzi M, Parlato S, Spada M, Di Pucchio T, Belardelli F (2000) Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice. J Exp Med 191:1777–1788CrossRefPubMedGoogle Scholar
  47. 47.
    Thurnher M, Radmayr C, Ramoner R, Ebner S, Bock G, Klocker H, Romani N, Bartsch G (1996) Human renal-cell carcinoma tissue contains dendritic cells. Int J Cancer 68:1–7CrossRefPubMedGoogle Scholar
  48. 48.
    Troy AJ, Summers KL, Davidson PJ, Atkinson CH, Hart DN (1998) Minimal recruitment and activation of dendritic cells within renal cell carcinoma. Clin Cancer Res 4:585–593PubMedGoogle Scholar
  49. 49.
    Schwaab T, Schned AR, Heaney JA, Cole BF, Atzpodien J, Wittke F, Ernstoff MS (1999) In vivo description of dendritic cells in human renal cell carcinoma. J Urol 162:567–573CrossRefPubMedGoogle Scholar
  50. 50.
    Almand B, Resser JR, Lindman B, Nadaf S, Clark JI, Kwon ED, Carbone DP, Gabrilovich DI (2000) Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 6:1755–1766PubMedGoogle Scholar
  51. 51.
    Beignon AS, Skoberne M, Bhardwaj N (2003) Type I interferons promote cross-priming: more functions for old cytokines. Nat Immunol 4:939–941CrossRefPubMedGoogle Scholar
  52. 52.
    Le Bon A, Etchart N, Rossmann C, Ashton M, Hou S, Gewert D, Borrow P, Tough DF (2003) Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon. Nat Immunol 4:1009–1015CrossRefPubMedGoogle Scholar
  53. 53.
    Oosterwijk E, Ruiter DJ, Hoedemaeker PJ, Pauwels EK, Jonas U, Zwartendijk J, Warnaar SO (1986) Monoclonal antibody G 250 recognizes a determinant present in renal-cell carcinoma and absent from normal kidney. Int J Cancer 38:489–494PubMedGoogle Scholar
  54. 54.
    Hernandez JM, Bui MH, Han KR, Mukouyama H, Freitas DG, Nguyen D, Caliliw R, Shintaku PI, Paik SH, Tso CL, Figlin RA, Belldegrun AS (2003) Novel kidney cancer immunotherapy based on the granulocyte-macrophage colony-stimulating factor and carbonic anhydrase IX fusion gene. Clin Cancer Res 9:1906–1916PubMedGoogle Scholar
  55. 55.
    Jenne L, Schuler G, Steinkasserer A (2001) Viral vectors for dendritic cell-based immunotherapy. Trends Immunol 22:102–107CrossRefPubMedGoogle Scholar
  56. 56.
    Schmidt SM, Schag K, Muller MR, Weinschenk T, Appel S, Schoor O, Weck MM, Grunebach F, Kanz L, Stevanovic S, Rammensee HG, Brossart P (2004) Induction of adipophilin-specific cytotoxic T lymphocytes using a novel HLA-A2-binding peptide that mediates tumor cell lysis. Cancer Res 64:1164–1170PubMedGoogle Scholar
  57. 57.
    Flad T, Spengler B, Kalbacher H, Brossart P, Baier D, Kaufmann R, Bold P, Metzger S, Bluggel M, Meyer HE, Kurz B, Muller CA (1998) Direct identification of major histocompatibility complex class I-bound tumor-associated peptide antigens of a renal carcinoma cell line by a novel mass spectrometric method. Cancer Res 58:5803–5811PubMedGoogle Scholar
  58. 58.
    Sievers E, Albers P, Schmidt-Wolf IG, Marten A (2004) Telomerase pulsed dendritic cells for immunotherapy for renal cell carcinoma. J Urol 171:114–119CrossRefPubMedGoogle Scholar
  59. 59.
    Liao X, Li Y, Bonini C, Nair S, Gilboa E, Greenberg PD, Yee C (2004) Transfection of RNA encoding tumor antigens following maturation of dendritic cells leads to prolonged presentation of antigen and the generation of high-affinity tumor-reactive cytotoxic T lymphocytes. Mol Ther 9:757–764CrossRefPubMedGoogle Scholar
  60. 60.
    Cerundolo V, Hermans IF, Salio M (2004) Dendritic cells: a journey from laboratory to clinic. Nat Immunol 5:7–10CrossRefPubMedGoogle Scholar
  61. 61.
    Schuler G, Schuler-Thurner B, Steinman RM (2003) The use of dendritic cells in cancer immunotherapy. Curr Opin Immunol 15:138–147CrossRefPubMedGoogle Scholar
  62. 62.
    Javorovic M, Pohla H, Frankenberger B, Wölfel T, Schendel DJ (2005) RNA transfer by electroporation into mature dendritic cells leading to reactivation of effector-memory cytotoxic T lymphocytes: a quantitative analysis. Mol Ther (in press)Google Scholar
  63. 63.
    Hakim FT, Flomerfelt FA, Boyiadzis M, Gress RE (2004) Aging, immunity and cancer. Curr Opin Immunol 16:151–156CrossRefPubMedGoogle Scholar
  64. 64.
    Terabe M, Berzofsky JA (2004) Immunoregulatory T cells in tumor immunity. Curr Opin Immunol 16:157–162CrossRefPubMedGoogle Scholar
  65. 65.
    Childs R, Chernoff A, Contentin N, Bahceci E, Schrump D, Leitman S, Read EJ, Tisdale J, Dunbar C, Linehan WM, Young NS, Barrett AJ (2000) Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem-cell transplantation. N Engl J Med 343:750–758CrossRefPubMedGoogle Scholar
  66. 66.
    Kolb HJ, Schmid C, Barrett AJ, Schendel DJ (2003) Graft-versus-leukemia reactions in allogeneic chimeras. Blood 103:767–776CrossRefPubMedGoogle Scholar
  67. 67.
    Schendel DJ, Gansbacher B (1993) Tumor-specific lysis of human renal cell carcinomas by tumor-infiltrating lymphocytes: modulation of recognition through retroviral transduction of tumor cells with interleukin 2 complementary DNA and exogenous alpha interferon treatment. Cancer Res 53:4020–4025PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Bernhard Frankenberger
    • 1
    Email author
  • Sybille Regn
    • 1
  • Christiane Geiger
    • 1
  • Elfriede Noessner
    • 1
  • Christine S. Falk
    • 1
  • Heike Pohla
    • 1
    • 2
  • Miran Javorovic
    • 1
    • 2
  • Tobias Silberzahn
    • 1
  • Susanne Wilde
    • 1
  • Alexander Buchner
    • 2
  • Michael Siebels
    • 2
  • Ralph Oberneder
    • 2
    • 3
  • Gerald Willimsky
    • 4
    • 5
  • Antonio Pezzutto
    • 4
    • 6
  • Thomas Blankenstein
    • 4
    • 5
  • Dolores J. Schendel
    • 1
  1. 1.Institute of Molecular ImmunologyGSF-National Research Center for Environment and Health
  2. 2.Laboratory for Tumor ImmunologyDepartment of Urology
  3. 3.Urology ClinicMunich-Planegg
  4. 4.Max Delbrück Center for Molecular MedicineBerlin
  5. 5.Institute of ImmunologyCharité-University Medicine Berlin
  6. 6.Department of HematologyOncology and TumorimmunologyGermany

Personalised recommendations