Advertisement

Journal of Plant Growth Regulation

, Volume 38, Issue 4, pp 1516–1528 | Cite as

Comparative Analysis of Tolerant and Susceptible Citrus Reveals the Role of Methyl Salicylate Signaling in the Response to Huanglongbing

  • Xiuping ZouEmail author
  • Xiaojing Bai
  • Qingli Wen
  • Zhu Xie
  • Liu Wu
  • Aihong Peng
  • Yongrui He
  • Lanzhen Xu
  • Shanchun ChenEmail author
Article

Abstract

Huanglongbing (HLB), associated with Candidatus Liberibacter asiaticus (Las), is the most devastating disease of citrus worldwide. Tolerance to HLB has been observed in some citrus varieties, but its molecular mechanisms are not well understood. Methyl salicylate (MeSA), involved in salicylic acid (SA) signaling, is a critical mobile signal for plant systematic acquired resistance (SAR). This study compared the response of tolerant sour pomelo (Citrus grandis Osbeck) and susceptible Jincheng orange (Citrus sinensis Osbeck) to Las infection. During 18 months of resistance evaluation, sour pomelo displayed significantly delayed and milder symptoms, and tolerated higher levels of Las growth, compared with Jincheng orange. High levels of MeSA were detected in sour pomelo and MeSA responded positively to Las infection. Little MeSA was found in Jincheng orange regardless of Las infection. Correspondingly, the SA content in sour pomelo was significantly higher than that in Jincheng orange. During Las infection, SA levels decreased significantly in sour pomelo but increased in Jincheng orange. These data indicated that MeSA was correlated with tolerance to HLB in citrus. Gene expression analysis showed that CsSAMT1 and CsSABP2-1, involved in the interconversion of MeSA and SA, were related to MeSA accumulation in sour pomelo, and sour pomelo possesses a strong SAR response. Our study indicates that MeSA-mediated SAR plays an important role in citrus tolerance to HLB. This study provides new insights into HLB tolerance in citrus and useful guidance for improving citrus resistance to HLB by manipulation of MeSA signaling in the future.

Keywords

Citrus HLB Tolerance MeSA SA SAR 

Notes

Acknowledgements

This work was supported by grants from the National Key R&D Program of China (2018YFD0201500, to XZ), the Earmarked Fund for the China Agriculture Research System (CARS-26, to SC), the Natural Science Foundation Project of CQ (cstc2017jcyjBX0020, to XZ), and the National Citrus Engineering Research Center (NCERC, to XZ). We thank Robbie Lewis, MSc, from Liwen Bianji, Edanz Group China (http://www.liwenbianji.cn/ac), for editing a draft of this manuscript.

Author contribution

XZ designed the experiments and wrote the manuscript. XB performed resistance evaluations. QW performed citrus hormone. ZX performed starch content analysis. LW performed microscopic observations and RT-qPCR analysis. AP and YH performed PCR analysis. LX and ZX performed qPCR analysis. SC analyzed the data and revised the manuscript. All authors read and approved the manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

344_2019_9953_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1718 KB)

References

  1. Albrecht U, Bowman KD (2012) Transcriptional response of susceptible and tolerant citrus to infection with Candidatus Liberibacter asiaticus. Plant Sci 185–186:118–130.  https://doi.org/10.1016/j.plantsci.2011.09.008 CrossRefPubMedGoogle Scholar
  2. Aritua V, Achor D, Gmitter FG, Albrigo G, Wang N (2013) Transcriptional and microscopic analyses of citrus stem and root responses to Candidatus Liberibacter asiaticus infection. PloS ONE 8:e73742  https://doi.org/10.1371/journal.pone.0073742 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Boava LP, Cristofaniyaly M, Machado MA (2017) Physiologic, anatomic, and gene expression changes in Citrus sunki, Poncirus trifoliata and their hybrids after After ‘Candidatus Liberibacter asiaticus’. Infect Phytopathol 107:590–599.  https://doi.org/10.1094/PHYTO-02-16-0077-R CrossRefGoogle Scholar
  4. Bove JM (2006) Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. J Plant Pathol 88:7–37.  https://doi.org/10.4454/jpp.v88i1.828 CrossRefGoogle Scholar
  5. da Graca JV, Douhan GW, Halbert SE, Keremane ML, Lee RF, Vidalakis G, Zhao H (2016) Huanglongbing: an overview of a complex pathosystem ravaging the world’s citrus. J Integr Plant biol 58:373–387.  https://doi.org/10.1111/jipb.12437 CrossRefPubMedGoogle Scholar
  6. Duan Y et al (2009) Complete genome sequence of citrus huanglongbing bacterium, ‘Candidatus Liberibacter asiaticus’ obtained through metagenomics Mol Plant Microbe Interact 22:1011–1020.  https://doi.org/10.1094/MPMI-22-8-1011 CrossRefPubMedGoogle Scholar
  7. DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related. Subst Analy Chem 28:350–356.  https://doi.org/10.1021/ac60111a017 CrossRefGoogle Scholar
  8. Dutt M, Barthe G, Irey M, Grosser J (2016) Transgenic citrus expressing an arabidopsis NPR1 gene exhibit enhanced resistance against huanglongbing (HLB; citrus greening). PLoS ONE 11:e0147657.  https://doi.org/10.1371/journal.pone.0147657 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Ellinger D, Voigt CA (2014) Callose biosynthesis in Arabidopsis with a focus on pathogen response: what we have learned within the last decade. Ann Bot 114:1349–1358.  https://doi.org/10.1093/aob/mcu120 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Fan J, Chen CX, Yu QB, Brlansky RH, Li ZG, Gmitter FG (2011) Comparative iTRAQ proteome and transcriptome analyses of sweet orange infected by “Candidatus Liberibacter asiaticus”. Physiol Plantarum 143:235–245.  https://doi.org/10.1111/j.1399-3054.2011.01502.x CrossRefGoogle Scholar
  11. Fernández-Crespo E, Navarro JA, Serra-Soriano M, Finiti I, García-Agustín P, Pallás V, González-Bosch C (2017) Hexanoic acid treatment prevents systemic MNSV movement in Cucumis melo plants by priming callose deposition correlating SA and OPDA accumulation. Front Plant Sci 8:1793.  https://doi.org/10.3389/fpls.2017.01793 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Folimonova SY, Robertson CJ, Garnsey SM, Gowda S, Dawson WO (2009) Examination of the responses of different genotypes of citrus to huanglongbing (citrus greening) under different conditions Phytopathology 99:1346–1354.  https://doi.org/10.1094/PHYTO-99-12-1346 CrossRefPubMedGoogle Scholar
  13. Friedrich L, Lawton K, Dietrich R, Willits M, Cade R, Ryals J (2001) NIM1 overexpression in arabidopsis potentiates plant disease resistance and results in enhanced effectiveness of fungicides. Mol Plant Microbe 14:1114–1124  https://doi.org/10.1094/MPMI.2001.14.9.1114 CrossRefGoogle Scholar
  14. Fu SM, Hartung J, Zhou CY, Su HN, Tan J, Li ZA (2015) Ultrastructural changes and putative phage particles observed in sweet orange leaves infected with ‘Candidatus Liberibacter asiaticus’. Plant Dis 99:320–324.  https://doi.org/10.1094/PDIS-01-14-0106-RE CrossRefPubMedGoogle Scholar
  15. Hodges AW, Spreen TH (2012) Economic impacts of citrus greening (HLB) in Florida, 2006/07-2010/11 Food & Resource EconomicsGoogle Scholar
  16. Kim JS, Sagaram US, Burns JK, Li JL, Wang N (2009) Response of sweet orange (Citrus sinensis) to ‘Candidatus Liberibacter asiaticus’ infection: microscopy and microarray analyses Phytopathology 99:50–57.  https://doi.org/10.1094/PHYTO-99-1-0050 CrossRefPubMedGoogle Scholar
  17. Kumar D (2014) Salicylic acid signaling in disease resistance. Plant Sci 228:127–134.  https://doi.org/10.1016/j.plantsci.2014.04.014 CrossRefPubMedGoogle Scholar
  18. Li W, Levy L, Hartung JS (2009) Quantitative distribution of ‘Candidatus Liberibacter asiaticus’ in citrus plants with citrus huanglongbing Phytopathology 99:139–144.  https://doi.org/10.1094/PHYTO-99-2-0139 CrossRefPubMedGoogle Scholar
  19. Li JY, Pang ZQ, Trivedi P, Zhou XF, Ying XB, Jia HG, Wang NA (2017) ‘Candidatus Liberibacter asiaticus’ encodes a functional salicylic acid (SA) hydroxylase that degrades SA to suppress plant defenses Mol Plant Microbe 30:620–630  https://doi.org/10.1094/Mpmi-12-16-0257-R CrossRefGoogle Scholar
  20. Lin J et al (2013) Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode. Plant Biotechnol J 11:1135–1145.  https://doi.org/10.1111/pbi.12108 CrossRefPubMedGoogle Scholar
  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time Quantitative PCR and the 2–∆∆CT. Method Methods 25:402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar
  22. Lu H, Greenberg JT, Holuigue L (eds) (2016) Salicylic Acid Signaling Networks. Lausanne: Frontiers Media. Lausanne: Frontiers Media.  https://doi.org/10.3389/978-2-88919-827-6 Google Scholar
  23. Manosalva PM, Park SW, Forouhar F, Tong L, Fry WE, Klessig DF (2010) Methyl esterase 1 (StMES1) is required for systemic acquired resistance in potato Mol Plant Microbe Interact 23:1151–1163.  https://doi.org/10.1094/MPMI-23-9-1151 CrossRefPubMedGoogle Scholar
  24. Martinelli F et al (2012) Transcriptome profiling of citrus fruit response to Huanglongbing disease PloS one 7:e38039  https://doi.org/10.1371/journal.pone.0038039 CrossRefGoogle Scholar
  25. Martinelli F et al (2013) Gene regulatory networks elucidating huanglongbing disease mechanisms PLoS ONE 8:e74256  https://doi.org/10.1371/journal.pone.0074256 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Nishimura MT, Stein M, Hou BH, Vogel JP, Edwards H, Somerville SC (2003) Loss of a callose synthase results in salicylic acid-dependent disease resistance Science 301:969–972.  https://doi.org/10.1126/science.1086716 CrossRefPubMedGoogle Scholar
  27. Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance Science 318:113–116.  https://doi.org/10.1126/science.1147113 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Seskar M, Shulaev V, Raskin I (1998) Endogenous methyl salicylate in pathogen-inoculated tobacco plants Plant Physiol 116:387–392 doi.  https://doi.org/10.1104/Pp.116.1.387 CrossRefPubMedCentralGoogle Scholar
  29. Shine MB, Xiao XQ, Kachroo P, Kachroo A (2018) Signaling mechanisms underlying systemic acquired resistance to microbial pathogens Plant Science  https://doi.org/10.1016/j.plantsci.2018.01.001 CrossRefPubMedGoogle Scholar
  30. Shokrollah H, Abdullah TL, Sijam K, Siti Nor AA, Nur Ashikin PA (2009) Differential reaction of citrus species in Malaysia to Huanglongbing (HLB) disease using grafting method. Am J Agric Biol Sci 4:32–38.  https://doi.org/10.3844/AJAB.2009.32.38 CrossRefGoogle Scholar
  31. Silverman P, Seskar M, Kanter D, Schweizer P, Metraux JP, Raskin I (1995) Salicylic acid in rice (biosynthesis, conjugation, and possible role). Plant Physiol 108:633–639CrossRefGoogle Scholar
  32. Tatineni S, Sagaram US, Gowda S, Robertson CJ, Dawson WO, Iwanami T, Wang N (2008) In planta distribution of ‘Candidatus Liberibacter asiaticus’ as revealed by polymerase chain reaction (PCR) and real-time. PCR Phytopathol 98:592–599.  https://doi.org/10.1094/PHYTO-98-5-0592 CrossRefGoogle Scholar
  33. Trivedi P et al (2009) Quantification of viable Candidatus Liberibacter asiaticus in hosts using quantitative PCR with the aid of ethidium monoazide (EMA). Eur J Plant Pathol 124:553–563.  https://doi.org/10.1007/s10658-009-9439-x CrossRefGoogle Scholar
  34. Wang Y, Zhou L, Yu X, Stover E, Luo F, Duan Y (2016) Transcriptome profiling of Huanglongbing (HLB) tolerant and susceptible citrus plants reveals the role of basal resistance in HLB tolerance Front Plant Sci 7:933.  https://doi.org/10.3389/fpls.2016.00933 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Wang N et al (2017) The Candidatus Liberibacter-Host Interface: Insights into Pathogenesis Mechanisms and Disease Control Ann Rev Phytopathol 55:451–482.  https://doi.org/10.1146/annurev-phyto-080516-035513 CrossRefGoogle Scholar
  36. Xu MR, Li Y, Zheng Z, Dai ZH, Tao Y, Deng XL (2015) Transcriptional Analyses of Mandarins Seriously Infected by ‘Candidatus Liberibacter asiaticus’ PLoS ONE 10:e0133652.  https://doi.org/10.1371/journal.pone.0133652 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Yi SY, Shirasu K, Moon JS, Lee S-G, Kwon S-Y (2014) The activated SA and JA signaling pathways have an influence on flg22-triggered oxidative burst and callose deposition. PLoS ONE 9:e88951.  https://doi.org/10.1371/journal.pone.0088951 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Zhang XD, Francis MI, Dawson WO, Graham JH, Orbović V, Triplett EcW, Mou ZL (2010) Over-expression of the Arabidopsis NPR1 gene in citrus increases resistance to citrus canker European. J Plant Pathol 128:91–100.  https://doi.org/10.1007/s10658-010-9633-x CrossRefGoogle Scholar
  39. Zheng ZL, Zhao Y (2013) Transcriptome comparison and gene coexpression network analysis provide a systems view of citrus response to ‘Candidatus Liberibacter asiaticus’ infection BMC Genomics 14:27  https://doi.org/10.1186/1471-2164-14-27 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Zhong Y et al (2015) Comparative Transcriptome and iTRAQ Proteome Analyses of Citrus Root Responses to Candidatus Liberibacter asiaticus infection. PLoS ONE 10:e0126973.  https://doi.org/10.1371/journal.pone.0126973 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Zou X et al (2017) Transgenic citrus expressing synthesized cecropin B genes in the phloem exhibits decreased susceptibility to Huanglongbing. Plant Mol Biol 93:341–353.  https://doi.org/10.1007/s11103-016-0565-5 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xiuping Zou
    • 1
    • 2
    Email author
  • Xiaojing Bai
    • 1
    • 2
  • Qingli Wen
    • 1
    • 2
  • Zhu Xie
    • 1
    • 2
  • Liu Wu
    • 1
    • 2
  • Aihong Peng
    • 1
    • 2
  • Yongrui He
    • 1
    • 2
  • Lanzhen Xu
    • 1
    • 2
  • Shanchun Chen
    • 1
    • 2
    Email author
  1. 1.Citrus Research InstituteChinese Academy of Agricultural Sciences and National Center for Citrus Variety ImprovementChongqingPeople’s Republic of China
  2. 2.Citrus Research InstituteSouthwest UniversityChongqingPeople’s Republic of China

Personalised recommendations