Advertisement

Salt Stress-Induced Changes in In Vitro Cultured Stevia rebaudiana Bertoni: Effect on Metabolite Contents, Antioxidant Capacity and Expression of Steviol Glycosides-Related Biosynthetic Genes

  • Simone Ribeiro LuchoEmail author
  • Marcelo Nogueira do Amaral
  • Priscila Ariane Auler
  • Valmor João Bianchi
  • María Ángeles Ferrer
  • Antonio Asensio Calderón
  • Eugenia Jacira Bolacel Braga
Article
  • 24 Downloads

Abstract

Stevia rebaudiana is an industrially and medicinally important herb, mainly due to its steviol glycoside content, which is a calorie-free natural sweetener. Moreover, it contains other phytochemicals that make this species potentially beneficial for health. Salt stress affects plant growth, development and plant metabolism. The present study was executed with the objective of evaluating the effect of different NaCl concentrations (0.0, 0.5, 1.0 and 1.5 g L−1) on growth parameters, total soluble sugars, steviol glycosides and phenolic compounds (total soluble phenols, flavonoids and hydroxycinnamic acids), as well as antioxidant capacity (with a FRAP and DPPH assay). We also analysed in this study the expression levels of genes involved in the three stages of the steviol glycosides biosynthesis pathway in S. rebaudiana. Treatment with NaCl decreased root numbers and weights (dry and fresh), while increasing antioxidant capacity (according to the FRAP assay), hydroxycinnamic acid and total soluble sugar content. Furthermore, the up-regulation of several genes (CMS, CMK, HDR and UGT76G1) encoding key enzymes of the steviol glycoside biosynthetic pathways was observed after NaCl treatments. The results provide new insights into the physiological, biochemical and molecular response mechanisms of in vitro-grown stevia plants to NaCl.

Keywords

Salinity Stevia Antioxidants Phenolic compounds Steviol glycosides Glycosides biosynthesis genes 

Notes

Acknowledgements

The authors gratefully acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for their financial support and research fellowship EJBB and also the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. This work was partially carried out at the IBV, UPCT (Spain).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

344_2019_9937_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 13 KB)
344_2019_9937_MOESM2_ESM.docx (18 kb)
Supplementary material 2 (DOCX 17 KB)
344_2019_9937_MOESM3_ESM.docx (18 kb)
Supplementary material 3 (DOCX 17 KB)
344_2019_9937_MOESM4_ESM.docx (13 kb)
Supplementary material 4 (DOCX 13 KB)

References

  1. Ali RM, Abbas HM (2003) Response of salt stressed barely seedlings to phenylurea. Plant Soil Environ 49:158–162.  https://doi.org/10.17221/4107-PSE CrossRefGoogle Scholar
  2. Álvarez-Robles MJ, López-Orenes A, Ferrer MA, Calderón AA (2016) Methanol elicits the accumulation of bioactive steviol glycosides and phenolics in Stevia rebaudiana shoot cultures. Ind Crops Prod 87:273–279.  https://doi.org/10.1016/j.indcrop.2016.04.054 CrossRefGoogle Scholar
  3. Bender C, Graziano S, Zimmerman BF (2015) Study of Stevia rebaudiana Bertoni antioxidant activities and cellular properties. Int J Food Sci Nutr 66:553–558.  https://doi.org/10.3109/09637486.2015.1038223 CrossRefGoogle Scholar
  4. Bondarev N, Reshetnyak O, Nosov A (2001) Peculiarities of diterpenoid steviol glycoside production in in vitro cultures of Stevia rebaudiana Bertoni. Plant Sci 161:155–163.  https://doi.org/10.1016/S0168-9452(01)00400-9 CrossRefGoogle Scholar
  5. Brandle JE, Telmer PG (2007) Steviol glycoside biosynthesis. Phytochemistry 68:1855–1863.  https://doi.org/10.1016/j.phytochem.2007.02.010 CrossRefGoogle Scholar
  6. Cantabella D, Piqueras A, Acosta-Motos JR, Bernal-Vicente A, Hernandez JA, Díaz-Vivancos P (2017) Salt-tolerance mechanisms induced in Stevia rebaudiana Bertoni: effects on mineral nutrition, antioxidative metabolism and steviol glycoside content. Plant Physiol Biochem 115:484–496.  https://doi.org/10.1016/j.plaphy.2017.04.023 CrossRefGoogle Scholar
  7. Ceunen S, Geuns JMC (2013) Steviol glycosides: chemical diversity, metabolism, and function. J Nat Prod 76:1201–1228.  https://doi.org/10.1021/np400203b CrossRefGoogle Scholar
  8. Debnath M, Ashwath N, Hill CB, Callahane DL, Dias DA, Jayasinghe DS, Midmore DJ, Roessner U (2018) Comparative metabolic and ionomic profiling of two cultivars of Stevia rebaudiana Bert. (Bertoni) grown under salinity stress. Plant Physiol Biochem 129:56–70.  https://doi.org/10.1016/j.plaphy.2018.05.001 CrossRefGoogle Scholar
  9. Fallah F, Nokhasi F, Ghaheri M, Kahrizi D, Beheshti AAA, Ghorbani T, Kazemi E, Ansarypou Z (2017) Effect of salinity on gene expression, morphological and biochemical characteristics of Stevia rebaudiana Bertoni under in vitro conditions. Cell Mol Biol 63:102–103.  https://doi.org/10.14715/cmb/2017.63.7.17 CrossRefGoogle Scholar
  10. Gantait S, Banerjee J (2017) Geographical distribution, botanical description and self-incompatibility mechanism of genus Stevia. Sugar Tech 20:1–10.  https://doi.org/10.1007/s12355-017-0563-1 CrossRefGoogle Scholar
  11. Geuns JMC (2003) Stevioside. Phytochemistry 64:913–921.  https://doi.org/10.1016/S0031-9422(03)00426-6 CrossRefGoogle Scholar
  12. Gupta P, Sharma S, Saxena S (2016) Effect of abiotic stress on growth parameters and steviol glycoside content in Stevia rebaudiana (Bertoni) raised in vitro. J Appl Res Med Aromat Plants 3:160–167.  https://doi.org/10.1016/j.jarmap.2016.03.004 Google Scholar
  13. Guzman R, Midmore DJ, Walsh KB (2018) Do steviol glycosides act either as a carbon storage pool or in osmoregulation within leaves of Stevia rebaudiana? J Nat Prod 81:2357–2363.  https://doi.org/10.1021/acs.jnatprod.8b00196 CrossRefGoogle Scholar
  14. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499.  https://doi.org/10.1146/annurev.arplant.51.1.463 CrossRefGoogle Scholar
  15. Hussin S, Geissler N, El-Far MMM, Koyro H (2017) Effects of salinity and short-term elevated atmospheric CO2 on the chemical equilibrium between CO2 fixation and photosynthetic electron transport of Stevia rebaudiana Bertoni. Plant Physiol Biochem 118:178–186.  https://doi.org/10.1016/j.plaphy.2017.06.01 CrossRefGoogle Scholar
  16. JECFA (2010) Steviol glycosides. In: Compendium of food additive specifications. FAO JECFA Monographs 10:17–21Google Scholar
  17. Karaköse H, Jaiswal R, Kuhnert N (2011) Characterization and quantification of hydroxycinnamate derivatives in Stevia rebaudiana leaves by LC–MS. J Agric Food Chem 59:10143–10150.  https://doi.org/10.1021/jf202185m CrossRefGoogle Scholar
  18. Katalinic V, Milos M, Kulisic T, Jukic M (2006) Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem 94:550–557.  https://doi.org/10.1016/j.foodchem.2004.12.004 CrossRefGoogle Scholar
  19. Kim D, Jeong SW, Lee CY (2003) Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem 81:321–326.  https://doi.org/10.1016/S0308-8146(02)00423-5 CrossRefGoogle Scholar
  20. Kumar H, Kaul K, Bajpai-Gupta S, Kaul VK, Kumar S (2012) A comprehensive analysis of fifteen genes of steviol glycosides biosynthesis pathway in Stevia rebaudiana (Bertoni). Gene 492:276–284.  https://doi.org/10.1016/j.gene.2011.10.015 CrossRefGoogle Scholar
  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefGoogle Scholar
  22. López-Orenes A, Ros-Marín AF, Ferrer MA, Calderón AA (2013) Antioxidant capacity as a marker for assessing the in vitro performance of the endangered Cistus heterophyllus. Sci World J.  https://doi.org/10.1155/2013/176295 Google Scholar
  23. Loreti E, de Bellis L, Alpi A, Perata P (2001) Why and how do plant cells sense sugars? Ann Bot 88:803–812.  https://doi.org/10.1006/anbo.2001.1526 CrossRefGoogle Scholar
  24. Madan S, Ahmad S, Singh GN, Kohli K, Kumar Y, Singh R, Garg M (2010) Stevia rebaudiana (Bert.) Bertoni—a review. Indian J Nat Prod Resour 1:267–286.  https://doi.org/10.1016/S0031-9422(03)00426-6 Google Scholar
  25. Modi A, Litoriya N, Prajapati V, Rafalia R, Narayanan S (2014) Transcriptional profiling of genes involved in steviol glycoside biosynthesis in Stevia rebaudiana bertoni during plant hardening. Dev Dyn 243:1067–1073.  https://doi.org/10.1002/dvdy.24157 CrossRefGoogle Scholar
  26. Mohamed AAA, Ceunen S, Geuns JMC, Van den Ende W, De Ley M (2011) UDP-dependent glycosyltransferases involved in the biosynthesis of steviol glycosides. J Plant Physiol 168:1136–1141.  https://doi.org/10.1016/j.jplph.2011.01.030 CrossRefGoogle Scholar
  27. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissues. Physiol Plant 15:473–449CrossRefGoogle Scholar
  28. Pande SS, Gupta P (2013) Plant tissue culture of Stevia rebaudiana (Bertoni): a review. J Pharmacogn Phytother 5:26–33.  https://doi.org/10.5897/JPP13. 0258Google Scholar
  29. Pandey M, Chikara SK (2015) Effect of salinity and drought stress on growth parameters, glycoside content and expression level of vital genes in steviol glycosides biosynthesis pathway of Stevia rebaudiana (Bertoni). Int J Genet 7:153–160Google Scholar
  30. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349.  https://doi.org/10.1016/j.ecoenv.2004.06.010 CrossRefGoogle Scholar
  31. Pérez-Tortosa V, López-Orenes A, Pérez-Martínez A, Ferrer MA, Calderón AA (2012) Antioxidant activity and rosmarinic acid changes in salicylic acid-treated Thymus membranaceus shoots. Food Chem 130:362–369.  https://doi.org/10.1016/j.foodchem.2011.07.051- CrossRefGoogle Scholar
  32. Petit E, Jacques A, Daydé J, Vallejo V, Berge M (2018) UGT76G1 polymorphism in Stevia rebaudiana: new variants for steviol glycosides conjugation. Plant Physiol Biochem.  https://doi.org/10.1016/j.plaphy.2018.11.002 Google Scholar
  33. Rameeh V, Gerami M, Omran VG, Ghavampour S (2017) Impact of glycine betaine on salinity tolerance of stevia (Stevia rebaudiana Bertoni) under in vitro condition. Cercetări Agronomice în Moldova 3:95–105.  https://doi.org/10.1515/cerce-2017-0029 CrossRefGoogle Scholar
  34. Rao RS, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153.  https://doi.org/10.1016/S0734-9750(02)00007-1 CrossRefGoogle Scholar
  35. Rathore S, Singh N, Singh SK (2014) Influence of NaCl on biochemical parameters of two cultivars of Stevia rebaudiana regenerated in vitro. J Stress Physiol Biochem 10:287–296Google Scholar
  36. Reis M, Coelho L, Santos G, Kienle U, Beltrão J (2015) Yield response of stevia (Stevia rebaudiana Bertoni) to the salinity of irrigation water. Agric Water Manag 152:217–221.  https://doi.org/10.1016/j.agwat.2015.01.017 CrossRefGoogle Scholar
  37. Richman A, Swanson A, Humphrey T, Chapman R, Mcgarvey B, Pocs R, Brandle J (2005) Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana. Plant J 41:56–67.  https://doi.org/10.1111/j.1365-313X.2004.02275.x CrossRefGoogle Scholar
  38. Shahverdi MA, Omidi H, Tabatabaei SJ (2017a) Stevia (Stevia rebaudiana Bertoni) responses to NaCl stress: growth, photosynthetic pigments, diterpene glycosides and ion content in root and shoot. J Saudi Soc Agric Sci.  https://doi.org/10.1016/j.jssas.2017.12.001 Google Scholar
  39. Shahverdi MA, Omidi H, Tabatabaei S (2017b) Morpho-physiological response of stevia (Stevia rebaudiana Bertoni) to salinity under hydroponic culture condition (a case study in Iran). Appl Ecol Environ Res 16:17–28.  https://doi.org/10.15666/aeer/1601_017028 CrossRefGoogle Scholar
  40. Singh G, Singh G, Singh P, Parmar R, Paul N, Vashist R, Swarnkar MK, Kumar A, Singh S, Singh AK, Kumar S, Sharm RM (2017) Molecular dissection of transcriptional reprogramming of steviol glycosides synthesis in leaf tissue during developmental phase transitions in Stevia rebaudiana Bert. Sci Rep 7:1–13.  https://doi.org/10.1038/s41598-017-12025-y CrossRefGoogle Scholar
  41. Taarit M, Msaada K, Hosni K, Hammami M, Kchouk ME, Marzouk B (2009) Plant growth, essential oil yield and composition of sage (Salvia officinalis L.) fruits cultured under salt stress conditions. Ind Crops Prod 30:333–337CrossRefGoogle Scholar
  42. Yang Y, Huang S, Han Y, Yuan H, Gu C, Zhao Y (2014) Base substitution mutations in uridinediphosphate-dependent glycosyltransferase 76G1 gene of Stevia rebaudiana causes the low levels of rebaudioside A: mutations in UGT76G1, A key gene of steviol glycosides synthesis. Plant Physiol Biochem 80:220–225.  https://doi.org/10.1016/j.plaphy.2014.04.005 CrossRefGoogle Scholar
  43. Yang L, Yang C, Li C, Zhao Q, Liu L, Fang X, Chen X (2016) Recent advances in biosynthesis of bioactive compounds in traditional Chinese medicinal plants. Sci Bull 61:3–17.  https://doi.org/10.1007/s11434-015-0929-2 CrossRefGoogle Scholar
  44. Zeng J, Chen A, Li D, Yi B, Wu W (2013) Effects of salt stress on the growth, physiological responses, and glycoside contents of Stevia rebaudiana Bertoni. J Agric Food Chem 61:5720–5726.  https://doi.org/10.1021/jf401237x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Simone Ribeiro Lucho
    • 1
    Email author
  • Marcelo Nogueira do Amaral
    • 1
  • Priscila Ariane Auler
    • 1
  • Valmor João Bianchi
    • 1
  • María Ángeles Ferrer
    • 2
  • Antonio Asensio Calderón
    • 2
  • Eugenia Jacira Bolacel Braga
    • 1
  1. 1.Department of BotanyFederal University of PelotasPelotasBrazil
  2. 2.Department of Agricultural Science and TechnologyUniversidad Politécnica de CartagenaCartagenaSpain

Personalised recommendations