Synchronous Transcription of Cytoskeleton-Associated Genes is Critical to Cotton Fiber Elongation

  • Dhananjay K. Pandey
  • Bhupendra Chaudhary


Cytoskeleton-associated genes’ expression in the modern cotton fibers has selectively been evolved under domestication. Since the magnitude of transcriptional dynamicity of cytoskeletal genes in fibers has not yet been thoroughly explored, comprehensive expression analyses of the domestication-driven profilins (GhPRFs) were performed by assaying 12 tissues from various developmental stages of elite cotton genotypes. Results from 3240 successful profilin (GhPRF1–GhPRF6) expression assays revealed enormous spatial transcriptional biases with their predominant expression in the elongating fibers. Moreover, fiber developmental stages have more pronounced impacts on differential gene expression than the genetic backgrounds. Transcriptional comparisons of GhPRFs-associated key cytoskeletal genes GhAnnex and GhACT show perfect (r = 1.0) to strong positive (r > 0.95) correlation in the developing fibers. RNAi-mediated constitutive suppression of domestication-driven GhPRF1 gene resulted in significant expression modulation of GhAnnex and GhACT genes in floral/fiber tissues and consequently sustained the cell wall development. These results highlight that temporal expression of GhPRF–GhAnnex–GhACT triad is exceptionally coordinated which illustrates fascinating crosstalk in diverse cellular contexts and cell types. Temporal fold-expression variations of other cytoskeletal-‘structural’ genes Tub–Exp–FLA triad were transversely synchronous to the GhPRF–GhAnnex–GhACT genic triad. However, the CMW-‘modifying’ genes GalT1, ABP1, and CesA were unconditionally divergent from the synchronous temporal dynamics of genic triad investigated beforehand. To our knowledge, this study represents the first in-depth description of synchronous transcriptional dynamicity of cytoskeletal-‘structural’ genes in the developing fibers. These results present a novel viewpoint on the temporal expression evolution of cytoskeletal-‘structural’ genes, augmenting our understanding of the evolutionary genetics of cytoskeletal genes in fiber development.


Cotton fiber development Cell wall genes Genomics qRT-PCR RNAi 



This work was supported by the Department of Biotechnology (DBT), Government of India (Grant No. BT/PR8727/AGR/36/777/2013) and Council of Scientific and Industrial Research (CSIR), Government of India (Grant No. 38(1298)/11/EMR-II). DKP was also supported with research fellowship by the DBT, Government of India. Authors are thankful to the DBT and CSIR for providing financial support to carry out this research work.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

344_2019_9913_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 12 KB)
344_2019_9913_MOESM2_ESM.pptx (3.8 mb)
Supplementary material 2 (PPTX 3882 KB)
344_2019_9913_MOESM3_ESM.pptx (702 kb)
Supplementary material 3 (PPTX 702 KB)
344_2019_9913_MOESM4_ESM.pptx (4.5 mb)
Supplementary material 4 (PPTX 4624 KB)
344_2019_9913_MOESM5_ESM.pptx (47 kb)
Supplementary material 5 (PPTX 47 KB)
344_2019_9913_MOESM6_ESM.pptx (80 kb)
Supplementary material 6 (PPTX 80 KB)


  1. Adams KL, Wendel JF (2005) Allele-specific, bidirectional silencing of an alcohol dehydrogenase gene in different organs of interspecific diploid cotton hybrids. Genetics 171:2139–2142CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adams KL, Cronn R, Percifield R, Wendel JF (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organspecific reciprocal silencing. Proc Natl Acad Sci USA 100:4649–4654CrossRefPubMedGoogle Scholar
  3. Adams KL, Percifield R, Wendel JF (2004) Organ-specific silencing of duplicated genes in a newly synthesized cotton allotetraploid. Genetics 168:2217–2226CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alvarez-Martinez M, Porte F, Liautard J, Sri WJ (1997) Effects of profilin-annexin I association on some properties of both profilin and annexin I: modification of the inhibitory activity of profilin on actin polymerization and inhibition of the self-association of annexin I and its interactions with liposomes. Biochim Biophys Acta 1339:331–340CrossRefPubMedGoogle Scholar
  5. Argiriou A, Kalivas A, Michailidis G, Tsaftaris A (2012) Characterization of PROFILIN genes from allotetraploid (Gossypium hirsutum) cotton and its diploid progenitors and expression analysis in cotton genotypes differing in fiber characteristics. Mol Biol Rep 39:3523–3532CrossRefPubMedGoogle Scholar
  6. Balasubramanian R, Karve A, Kandasamy M, Meagher RB, Moore BD (2007) A role for F-Actin in hexokinase-mediated glucose signaling. Plant Physiol 145:1423–1434CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bao Y, Hu G, Flagel L, Salmon A, Bezanilla M, Paterson A, Wang Z, Wendel J (2011) Parallel up-regulation of the profilin gene family following independent domestication of diploid and allopolyploid cotton (Gossypium). Proc Natl Acad Sci USA 108:21152–21157CrossRefPubMedGoogle Scholar
  8. Braun N, Wyrzykowska J, Muller P, David K, Couch D, Perrot-Rechenmann C, Fleming AJ (2008) Conditional repression of Auxin Binding Protein1 reveals that it coordinates cell division and cell expansion during postembryonic shoot development in Arabidopsis and tobacco. Plant Cell 20:2746–2762CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bubb M, Yarmola E, Gibson B, Southwick F (2003) Depolymerization of actin filaments by profilin. Effects of profilin on capping protein function. J Biol Chem 278:24629–24635CrossRefPubMedGoogle Scholar
  10. Chaudhary B, Kumar S, Prasad KVSK, Oinam GS, Burma PK, Pental D (2003) Slow desiccation leads to high-frequency shoot recovery from transformed somatic embryos of cotton (Gossypium hirsutum L. Cv. Coker 310 FR). Plant Cell Rep 21:955–960CrossRefPubMedGoogle Scholar
  11. Chaudhary B, Hovav R, Rapp R, Verma N, Udall J, Wendel J (2008) Global analysis of gene expression in cotton fibers from wild and domesticated Gossypium barbadense. Evol Dev 10:567–582CrossRefPubMedGoogle Scholar
  12. Chaudhary B, Hovav R, Flagel L, Mittler R, Wendel J (2009) Parallel expression evolution of oxidative stress-related genes in fiber from wild and domesticated diploid and polyploid cotton (Gossypium). BMC Genom 10:378CrossRefGoogle Scholar
  13. Chen JG, Shimomura S, Sitbon F, Sandberg G, Jones AM (2001) The role of auxin-binding protein 1 in the expansion of tobacco leaf cells. Plant J 28:607–617CrossRefPubMedGoogle Scholar
  14. Cosgrove DJ (1997) Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. Plant Cell 9:1031–1041CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cosgrove D (2015) Plant expansins: diversity and interactions with plant cell walls. Curr Opin Plant Biol 25:162–172CrossRefPubMedPubMedCentralGoogle Scholar
  16. Crooks GE, Hon G, Chandonia J-M, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dahiya P, Findlay K, Roberts K, McCann MC (2006) A fasciclin-domain containing gene, ZeFLA11, is expressed exclusively in xylem elements that have reticulate wall thickenings in the stem vascular system of Zinnia elegans cv Envy. Planta 223:1281–1291CrossRefPubMedGoogle Scholar
  18. Dean JD, Goodwin PH, Hsiang T (2002) Comparison of relative RT-PCR and northern blot analyses to measure expression of β-1,3-glucanase in Nicotiana benthamiana infected with Colltotrichum destructivum. Plant Mol Biol Rep 20:347–356CrossRefGoogle Scholar
  19. Drøbak BK, Franklin-Tong VE, Staiger CJ (2004) The role of the actin cytoskeleton in plant cell signalling. New Phytologist 163:13–30CrossRefGoogle Scholar
  20. Ellis M, Egelund J, Schultz C, Bacic A (2010) Arabinogalactan-proteins: key regulators at the cell surface. Plant Physiol 153:403–419CrossRefPubMedPubMedCentralGoogle Scholar
  21. Endler A, Persson S (2011) Cellulose synthases and synthesis in Arabidopsis. Mol Plant 4:199–211CrossRefPubMedGoogle Scholar
  22. Faik A, Abouzouhair J, Sarhan F (2006) Putative fasciclin-like arabinogalactan-proteins (FLA) in wheat (Triticum aestivum) and rice (Oryza sativa): identification and bioinformatic analyses. Mol Genet Genomics 276:478–494CrossRefPubMedGoogle Scholar
  23. Fehr J, Trotter G, Oxford J, Hart D (2000) Comparison of Northern blot hybridization and a reverse transcriptase-polymerase chain reaction technique for measurement of mRNA expression of metalloproteinases and matrix components in articular cartilage and synovial membrane from horses with osteoarthritis. Am J Vet Res 61:900–905CrossRefPubMedGoogle Scholar
  24. Gallagher J, Grover C, Hu G, Wendel J (2016) Insights into the ecology and evolution of polyploid plants through network analysis. Mol Ecol 25:2644–2660CrossRefPubMedGoogle Scholar
  25. Gandhi P, Khare R (2018) A unique immunofluorescence protocol to detect protein expression in vascular tissues: tacking a long standing pathological hitch. Turk J Pathol 34:57–65Google Scholar
  26. Gerke V, Moss S (2002) Annexins: from structure to function. Physiol Rev 82:331–371CrossRefPubMedGoogle Scholar
  27. Gilliland LU, Pawloski LC, Kandasamy MK, Meagher RB (2003) Arabidopsis actin gene ACT7 plays an essential role in germination and root growth. Plant J 33:319–328CrossRefPubMedGoogle Scholar
  28. Gou J, Wang L, Chen S, Hu W, Chen X (2007) Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis. Cell Res 17:422–434CrossRefPubMedGoogle Scholar
  29. Grieve AG, Moss SE, Hayes MJ (2012) Annexin A2 at the interface of actin and membrane dynamics: a focus on its roles in endocytosis and cell polarization. Int J Cell Biol. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Guo H, Li L, Ye H, Yu X, Algreen A, Yin Y (2009) Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana. Proc Natl Acad Sci USA 106:7648–7653CrossRefPubMedGoogle Scholar
  31. Harmer S, Orford S, Timmis J (2002) Characterisation of six alpha-expansin genes in Gossypium hirsutum (upland cotton). Mol Genet Genomics 268:1–9CrossRefPubMedGoogle Scholar
  32. Harpaz-Saad S, McFarlane HE, Xu S, Divi UK, Forward B, Western TL, Kieber JJ (2011) Cellulose synthesis via the FEI2 RLK/SOS5 pathway and cellulose synthase 5 is required for the structure of seed coat mucilage in Arabidopsis. Plant J 68:941–953CrossRefPubMedGoogle Scholar
  33. Hayes MJ, Shao D, Bailly M, Moss SE (2006) Regulation of actin dynamics by annexin 2. EMBO J 25:1816–1826CrossRefPubMedPubMedCentralGoogle Scholar
  34. He X-C, Qin Y-M, Xu Y, Hu C-Y, Zhu Y-X (2008) Molecular cloning, expression profiling, and yeast complementation of 19 β-tubulin cDNAs from developing cotton ovules. J Exp Bot 59:2687–2695CrossRefPubMedPubMedCentralGoogle Scholar
  35. Higaki T, Kutsuna N, Sano T, Kondo N, Hasezawa S (2010) Quantification and cluster analysis of actin cytoskeletal structures in plant cells: role of actin bundling in stomatal movement during diurnal cycles in Arabidopsis guard cells. Plant J 61:156–165CrossRefPubMedGoogle Scholar
  36. Huang Q, Wang H, Gao P, Wang G, Xia G (2008) Cloning and characterization of a calcium dependent protein kinase gene associated with cotton fiber development. Plant Cell Rep 27:1869–1875CrossRefPubMedGoogle Scholar
  37. Huang Y, Wang J, Zhang L, Zuo K (2013) A cotton annexin protein AnxGb6 regulates fiber elongation through its interaction with actin 1. PLoS ONE. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ito S, Suzuki Y, Miyamoto K, Ueda J, Yamaguchi I (2005) AtFLA11, a fasciclin-like arabinogalactan-protein, specifically localized in sclerenchyma cells. Biosci Biotechnol Biochem 69:1963–1969CrossRefPubMedGoogle Scholar
  39. Jensen EC (2013) Quantitative analysis of histological staining and fluorescence using Image J. Anat Rec 296:378–381CrossRefGoogle Scholar
  40. Johnson KL, Jones BJ, Schultz CJ, Bacic A (2003) Non-enzymatic cell wall (glyco)proteins. In: Rose JKC (ed) The plant cell wall. Blackwell Publishing Ltd/CRC Press: OxfordGoogle Scholar
  41. Jones P, Moore G, Waisman D (1992) A nonapeptide to the putative F-actin binding site of annexin-II tetramer inhibits its calcium-dependent activation of actin filament bundling. J Biol Chem 267:13993–13997PubMedGoogle Scholar
  42. Kandasamy MK, McKinney EC, Meagher RB (2002) Plant profilin isovariants are distinctly regulated in vegetative and reproductive tissues. Cell Motil Cytoskeleton 52:22–32CrossRefPubMedGoogle Scholar
  43. Keegstra K (2010) Plant cell walls. Plant Physiol 154:483–486CrossRefPubMedPubMedCentralGoogle Scholar
  44. Keyte AL, Percifield R, Liu B, Wendel JF (2006) Infraspecific DNA methylation polymorphism in cotton (Gossypium hirsutum L.). J Hered 97:444–450CrossRefPubMedGoogle Scholar
  45. Kim HJ, Triplett BA (2001) Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol 127:1361–1366CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kim H, Murai N, Fang D, Triplett B (2011) Functional analysis of Gossypium hirsutum cellulose synthase catalytic subunit 4 promoter in transgenic Arabidopsis and cotton tissues. Plant Sci 180:323–332CrossRefPubMedGoogle Scholar
  47. Kinosian H, Selden L, Gershman L, Estes J (2002) Actin filament barbed end elongation with nonmuscle MgATP-actin and MgADP-actin in the presence of profilin. Biochemistry 41:6734–6743CrossRefPubMedGoogle Scholar
  48. Laohavisit A, Shang Z, Rubio L, Cuin T, Véry A, Wang A, Mortimer J, Macpherson N, Coxon K, Battey N, Brownlee C, Park O, Sentenac H, Shabala S, Webb A, Davies J (2012) Arabidopsis annexin1 mediates the radical-activated plasma membrane Ca2+- and K+-permeable conductance in root cells. Plant Cell 24:1522–1533CrossRefPubMedPubMedCentralGoogle Scholar
  49. Larkin M, Blackshields G, Brown N, Chenna R, McGettigan P, McWilliam H, Valentin F, Wallace I, Wilm A, Lopez R, Thompson J, Gibson T, Higgins D (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefGoogle Scholar
  50. Li X, Cai L, Cheng N, Liu J (2002) Molecular characterization of the cotton GhTUB1 gene that is preferentially expressed in fiber. Plant Physiol 130:666–674CrossRefPubMedPubMedCentralGoogle Scholar
  51. Li Y, Sun J, Li C, Zhu Y, Xia G (2003) Specific expression of a beta-tubulin gene (GhTub1) in developing cotton fibers. Sci China C Life Sci 46:235–242PubMedGoogle Scholar
  52. Li X, Fan X, Wang X, Cai L, Yang W (2005) The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell 17:859–875CrossRefPubMedPubMedCentralGoogle Scholar
  53. Li Y, Liu D, Tu L, Zhang X, Wang L, Zhu L, Tan J, Deng F (2010) Suppression of GhAGP4 gene expression repressed the initiation and elongation of cotton fiber. Plant Cell Rep 29:193–202CrossRefPubMedGoogle Scholar
  54. Li B, Li D, Zhang J, Xia H, Wang X, Li Y, Li X (2013) Cotton AnnGh3 encoding an annexin protein is preferentially expressed in fibers and promotes initiation and elongation of leaf trichomes in transgenic Arabidopsis. J Integr Plant Biol 55:902–916PubMedGoogle Scholar
  55. Li B, Yang Y, Hu W, Li X, Cao J, Fan L (2015a) Over-expression of GhUGP1 in upland cotton improves fibre quality and reduces fibre sugar content. Plant Breed 134:197–202CrossRefGoogle Scholar
  56. Li Y, Tu L, Pettolino F, Ji S, Hao J, Yuan D, Deng F, Tan J, Hu H, Wang Q, Llewellyn D, Zhang X (2015b) GbEXPATR, a species-specific expansin, enhances cotton fibre elongation through cell wall restructuring. Plant Biotechnol J 14:951–963CrossRefPubMedGoogle Scholar
  57. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408CrossRefPubMedPubMedCentralGoogle Scholar
  58. Lizarbe MA, Barrasa JI, Olmo N, Gavilanes F, Turnay A (2013) Annexin–phospholipid interactions. Functional implications. Int J Mol Sci 14:2652–2683CrossRefPubMedPubMedCentralGoogle Scholar
  59. Lv F, Wang H, Wang X, Han L, Ma Y, Wang S, Feng Z, Niu X, Cai C, Kong Z, Zhang T, Guo W (2015) GhCFE1A, a dynamic linker between the ER network and actin cytoskeleton, plays an important role in cotton fibre cell initiation and elongation. J Exp Bot 66:1877–1889CrossRefPubMedPubMedCentralGoogle Scholar
  60. MacMillan C, Mansfield S, Stachurski Z, Evans R, Southerton S (2010) Fasciclin-like arabinogalactan proteins: specialization for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus. Plant J 62:689–703CrossRefPubMedGoogle Scholar
  61. MacMillan CP, Taylor L, Bi Y, Southerton SG, Evans R, Spokevicius A (2015) The fasciclin-like arabinogalactan protein family of Eucalyptus grandis contains members that impact wood biology and biomechanics. New Phytol 206:1314–1327CrossRefPubMedGoogle Scholar
  62. Majewska-Sawka A, Nothnagel EA (2000) The multiple roles of arabinogalactan proteins in plant development. Plant Physiol 122:3–10CrossRefPubMedPubMedCentralGoogle Scholar
  63. Marowa P, Ding A, Kong Y (2016) Expansins: roles in plant growth and potential applications in crop improvement. Plant Cell Rep 35:949–965CrossRefPubMedPubMedCentralGoogle Scholar
  64. McQueen-Mason S, Cosgrove D (1995) Expansin mode of action on cell walls. Analysis of wall hydrolysis, stress relaxation, and binding. Plant Physiol 107:87–100CrossRefPubMedPubMedCentralGoogle Scholar
  65. McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4:1425–1433CrossRefPubMedPubMedCentralGoogle Scholar
  66. Miart F, Desprez T, Biot E, Morin H, Belcram K, Höfte H, Gonneau M, Vernhettes S (2014) Spatio-temporal analysis of cellulose synthesis during cell plate formation in Arabidopsis. Plant J 77:71–84CrossRefPubMedGoogle Scholar
  67. Monastyrskaya K, Babiychuk E, Hostettler A, Rescher U, Draeger A (2007) Annexins as intracellular calcium sensors. Cell Calcium 41:207–219CrossRefPubMedGoogle Scholar
  68. Mujahid H, Pendarvis K, Reddy J, Nallamilli B, Reddy K, Nanduri B, Peng Z (2016) Comparative proteomic analysis of cotton fiber development and protein extraction method comparison in late stage fibers. Proteomes. CrossRefPubMedPubMedCentralGoogle Scholar
  69. Orford S, Timmis J (1998) Specific expression of an expansin gene during elongation of cotton fibres. Biochim Biophys Acta 1398:342–346CrossRefPubMedGoogle Scholar
  70. Pandey DK, Chaudhary B (2014) Oxidative stress responsive SERK1 gene directs the progression of somatic embryogenesis in cotton (Gossypium hirsutum L. cv. Coker 310). Am J Plant Sci 5(1):80–102. doiCrossRefGoogle Scholar
  71. Pandey DK, Chaudhary B (2016) Domestication-driven Gossypium profilin (GhPRF1) gene transduces early flowering phenotype in tobacco by spatial alteration of apical/floral-meristem related gene expression. BMC Plant Biol 16(112):1–21. CrossRefGoogle Scholar
  72. Pandey DK, Chaudhary B (2017) Evolutionary expansion and structural functionalism of the ancient family of profilin proteins. Gene 626:70–86CrossRefPubMedGoogle Scholar
  73. Pantaloni D, Carlier M (1993) How profilin promotes actin filament assembly in the presence of thymosin beta 4. Cell 75:1007–1014CrossRefPubMedGoogle Scholar
  74. Paque S, Mouille G, Grandont L, Alabadí D, Gaertner C, Goyallon A, Muller P, Primard-Brisset C, Sormani R, Blázquez MA, Perrot-Rechenmann C (2014) AUXIN BINDING PROTEIN1 links cell wall remodeling, auxin signaling and cell expression in Arabidopsis. Plant Cell 26:280–295CrossRefPubMedPubMedCentralGoogle Scholar
  75. Pear J, Kawagoe Y, Schreckengost W, Delmer D, Stalker D (1996) Higher plants contain homologs of the bacterial CelA genes encoding the catalytic subunit of the cellulose synthase. Proc Natl Acad Sci USA 93:12637–12642CrossRefPubMedGoogle Scholar
  76. Pollard T, Cooper J (1984) Quantitative analysis of the effect of Acanthamoeba profilin on actin filament nucleation and elongation. Biochemistry 23:6631–6641CrossRefPubMedGoogle Scholar
  77. Pring M, Weber A, Bubb M (1992) Profilin-actin complexes directly elongate actin filaments at the barbed end. Biochemistry 31:1827–1836CrossRefPubMedGoogle Scholar
  78. Qin L-X, Rao Y, Li L, Huang J-F, Xu W-L, Li X-B (2013) Cotton GalT1 encoding a putative glycosyltransferase is involved in regulation of cell wall pectin biosynthesis during plant development. PLoS ONE 8:e59115CrossRefPubMedPubMedCentralGoogle Scholar
  79. Qin L, Chen Y, Zeng W, Li Y, Gao L, Li D, Bacic A, Xu W, Li X (2017) The cotton β-galactosyltransferase 1 (GalT1) that galactosylates arabinogalactan proteins participates in controlling fiber development. Plant J 89:957–971CrossRefPubMedGoogle Scholar
  80. Ramachandran S, Christensen HE, Ishimaru Y, Dong CH, Chao-Ming W, Cleary AL, Chua NH (2000) Profilin plays a role in cell elongation, cell shape maintenance, and flowering in Arabidopsis. Plant Physiol 124:1637–1647CrossRefPubMedPubMedCentralGoogle Scholar
  81. Rapp R, Haigler C, Flagel L, Hovav R, Udall J, Wendel J (2010) Gene expression in developing fibres of Upland cotton (Gossypium hirsutum L.) was massively altered by domestication. BMC Biol 8:139CrossRefPubMedPubMedCentralGoogle Scholar
  82. Rescher U, Gerke V (2004) Annexins–unique membrane binding proteins with diverse functions. J Cell Sci 117:2631–2639CrossRefPubMedGoogle Scholar
  83. Robert S, Kleine-Vehn J, Barbez E, Sauer M, Paciorek T, Baster P, Vanneste S, Zhang J, Simon S, Čovanová M, Hayashi K, Dhonukshe P, Yang Z, Bednarek SY, Jones AM, Luschnig C, Aniento F, Zažímalová E, Friml J (2010) ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell 143:111–121Google Scholar
  84. Ruan Y-L, Llewellyn DJ, Furbank RT (2001a) The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K + transporters and expansin. Plant Cell 13:47–60PubMedPubMedCentralGoogle Scholar
  85. Ruan YL, Llewellyn DJ, Furbank RT (2001b) The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell 13:47–60PubMedPubMedCentralGoogle Scholar
  86. Saeed A, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378CrossRefPubMedGoogle Scholar
  87. Sampedro J, Cosgrove D (2005) The expansin superfamily. Genome Biol 6:242CrossRefPubMedPubMedCentralGoogle Scholar
  88. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J, White D, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682CrossRefGoogle Scholar
  89. Schultz CJ, Rumsewicz MP, Johnson KL, Jones BJ, Gaspar YM, Bacic A (2002) Using genomic resources to guide research directions. The arabinogalactan protein gene family as a test case. Plant Physiol 129:1448–1463CrossRefPubMedPubMedCentralGoogle Scholar
  90. Seifert GJ, Xue H, Acet T (2014) The Arabidopsis thaliana Fasciclin like arabinogalactan protein 4 gene acts synergistically with abscisic acid signalling to control root growth. Ann Bot 114:1125–1133CrossRefPubMedPubMedCentralGoogle Scholar
  91. Serna L, Martin C (2006) Trichomes: different regulatory networks lead to convergent structures. Trends Plant Sci 11:274–280CrossRefPubMedGoogle Scholar
  92. Shi H, Kim Y, Guo Y, Stevenson B, Zhu JK (2003) The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. Plant Cell 15:19–32CrossRefPubMedPubMedCentralGoogle Scholar
  93. Shimizu Y, Aotsuka S, Hasegawa O, Kawada T, Sakuno T, Sakai F, Hayashi T (1997) Changes in levels of mRNAs for cell wall-related enzymes in growing cotton fiber cells. Plant Cell Physiol 38:375–378CrossRefPubMedGoogle Scholar
  94. Showalter AM (2001) Arabinogalactan-proteins: structure, expression and function. Cell Mol Life Sci 58:1399–1417CrossRefPubMedGoogle Scholar
  95. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Roth MS, Santos A, Tsafou A, Kuhn K, Bork M, Jensen P, Von L (2015a) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452CrossRefPubMedPubMedCentralGoogle Scholar
  96. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015b) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucl Acids Res 43(Database issue):D447–D452. CrossRefPubMedGoogle Scholar
  97. Taliercio EW, Boykin D (2007) Analysis of gene expression in cotton fiber initials. BMC Plant Biol 7:22CrossRefPubMedPubMedCentralGoogle Scholar
  98. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  99. Tan L, Showalter AM, Egelund J, Hernandez-Sanchez A, Doblin MS, Bacic A (2012) Arabinogalactan-proteins and the research challenges for these enigmatic plant cell surface proteoglycans. Front Plant Sci. CrossRefPubMedPubMedCentralGoogle Scholar
  100. Tang W, He Y, Tu L, Wang M, Li Y, Ruan Y, Zhang X (2014) Down-regulating annexin gene GhAnn2 inhibits cotton fiber elongation and decreases Ca2+ influx at the cell apex. Plant Mol Biol 85:613–625CrossRefPubMedGoogle Scholar
  101. Thangavelu M, Belostotsky D, Bevan MW, Flavell RB, Rogers HJ, Lonsdale DM (1993) Partial characterization of the Nicotiana tabacum actin gene family: evidence for pollen-specific expression of one of the gene family members. Mol Gen Genet 240:290–295CrossRefPubMedGoogle Scholar
  102. Tilney L, Bonder E, Coluccio L, Mooseker M (1983) Actin from Thyone sperm assembles on only one end of an actin filament: a behavior regulated by profilin. J Cell Biol 97:112–124CrossRefPubMedGoogle Scholar
  103. Tromas A, Paponov I, Perrot-Rechenmann C (2010) AUXIN BINDING PROTEIN 1: functional and evolutionary aspects. Trends Plant Sci 15:436–446CrossRefPubMedGoogle Scholar
  104. Wan C, Wilkins T (1994) A modified hot-borate method significantly enhances the yield of high-quality RNA from cotton Gossypium hirsutum L. Anal Biochem 223:7–12CrossRefPubMedGoogle Scholar
  105. Wang HY, Yu Y, Chen ZL, Xia GX (2005) Functional characterization of Gossypium hirsutum profilin 1 gene (GhPFN1) in tobacco suspension cells. Characterization of in vivo functions of a cotton profilin gene. Planta 222:594–603CrossRefPubMedGoogle Scholar
  106. Wang J, Wang H, Zhao P, Han L, Jiao G, Zheng Y, Huang S, Xia G (2010a) Overexpression of a profilin (GhPFN2) promotes the progression of developmental phases in cotton fibers. Plant Cell Physiol 51:1276–1290CrossRefPubMedGoogle Scholar
  107. Wang Q, Liu F, Chen X, Ma X, Zeng H, (2010b) Transcriptome profiling of early developing cotton fiber by deep-sequencing reveals significantly differential expression of genes in a fuzzless/lintless mutant. Genomics 96:369–376CrossRefPubMedGoogle Scholar
  108. Wang H, Jiang C, Wang C, Yang Y, Yang L, Gao X, Zhang H (2015) Antisense expression of the fasciclin-like arabinogalactan protein FLA6 gene in Populus inhibits expression of its homologous genes and alters stem biomechanics and cell wall composition in transgenic trees. J Exp Bot 66:1291–1302CrossRefPubMedGoogle Scholar
  109. Wendel JF, Cronn RC (2003) Polyploidy and the evolutionary history of cotton. Adv Agron 78:139–186CrossRefGoogle Scholar
  110. Whittaker DJ, Triplett BA (1999) Gene-specific changes in α-tubulin transcript accumulation in developing cotton fibers. Plant Physiol 121:181–188CrossRefPubMedPubMedCentralGoogle Scholar
  111. Yarmola EG, Dranishnikov DA, Bubb MR (2008) Effect of profilin on actin critical concentration: a theoretical analysis. Biophys J 95:5544–5573CrossRefPubMedPubMedCentralGoogle Scholar
  112. Zang L, Zheng T, Chu Y, Ding C, Zhang W, Huang Q, Su X (2015) Genome-wide analysis of the fasciclin-like arabinogalactan protein gene family reveals differential expression patterns, localization, and salt stress response in populus. Front Plant Sci. CrossRefPubMedPubMedCentralGoogle Scholar
  113. Zhang M, Zheng X, Song S, Zeng Q, Hou L (2011a) Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nat Biotech 29:453–458CrossRefGoogle Scholar
  114. Zhang Y, Liu Z, Hua J (2011b) Direct submission of sequence in NCBI. Dept of Plant Genetics & Breeding, China Agricultural UniversityGoogle Scholar
  115. Zhang F, Jin X, Wang L, Li S, Wu S, Cheng C, Zhang T, Guo W (2016) A cotton annexin affects fiber elongation and secondary cell wall biosynthesis associated with Ca2+ influx, ROS homeostasis, and actin filament reorganization. Plant Physiol 171:1750–1770CrossRefPubMedPubMedCentralGoogle Scholar
  116. Zhou S, Han Y, Chen Y, Kong X, Wang W (2015) The involvement of expansins in response to water stress during leaf development in wheat. J Plant Physiol 183:64–74CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of BiotechnologyGautam Buddha UniversityGreater NoidaIndia

Personalised recommendations