Advertisement

Journal of Plant Growth Regulation

, Volume 38, Issue 2, pp 586–599 | Cite as

Proteomic Identification of Differentially Altered Proteins During Regeneration from Nodular Cluster Cultures in Vriesea reitzii (Bromeliaceae)

  • Jenny Paola Corredor-PradoEmail author
  • Daniela De Conti
  • Djalma Roecker Júnior
  • Gabriela Claudia Cangahuala-Inocente
  • Miguel Pedro Guerra
  • Lirio Luiz Dal Vesco
  • Rosete Pescador
Article
  • 128 Downloads

Abstract

Tissue culture techniques have been employed for bromeliad mass propagation by means of the morphogenetic route of nodular cluster cultures (NC), which exhibit high regenerative potential. This study aimed to identify proteins differentially altered during the regeneration of shoots from NC in the bromeliad Vriesea reitzii. Proteomic analysis was performed by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Image analysis from NC, microshoots and shoots resulted in the detection of 345, 482, and 209 protein spots, respectively. Proteins related to the stress response (catalase, probable l-ascorbate peroxidase 3 and heat shock protein 81-1) and amino acid metabolism (glutamine synthetase, 4-hydroxy-tetrahydrodipicolinate reductase 1, serine hydroxymethyltransferase 1 and 14-3-3-like protein GF14-F) and other proteins (elongation factor Ts, probable signal peptidase complex subunit 2, calcium-dependent protein kinase 23, and ubiquitin-like protein-NEDD8-like protein RUB3) exhibited increased abundance in the early stages of development. On the other hand, proteins related to carbohydrate metabolism (ribulose bisphosphate carboxylase/oxygenase activase, ribulose bisphosphate carboxylase, and phosphoglycerate kinase 1) and ATP synthesis (ATP synthase subunit alpha and ATP synthase subunit beta) exhibited increased abundance in later stages. Changes in proteins related to cellular metabolic processes, the assembly of the photosynthetic mechanism, the response to medium stress and the dynamics of the cell cytoskeleton contribute to a high regenerative potential, which characterizes NC. To our knowledge, this is the first proteomic analysis performed during the regeneration process from NC in bromeliads. This study may provide important insights into proteins and cellular events involved in the micropropagation of this group of plants.

Keywords

Bromeliads Micropropagation Protein abundances Regeneration 

Notes

Acknowledgements

The authors thank Programa de Estudantes-Convênio de Pós-Graduação (PEC-PG) da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC- PRONEX 2780/2012-4) for fellowships, research grants, and financial support. The authors also thank Centro de Biologia Molecular Estrutural da Universidade Federal de Santa Catarina (CEBIME/UFSC) where part of the work was developed.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ahsan N, Komatsu S (2009) Comparative analyses of the proteomes of leaves and flowers at various stages of development reveal organ-specific functional differentiation of proteins in soybean. Proteomics 9:4889–4907CrossRefPubMedGoogle Scholar
  2. Alves G, Dal Vesco LL, Guerra MP (2006) Micropropagation of the Brazilian endemic bromeliad Vriesea reitzii trough nodule clusters culture. Sci Hortic 110:204–207CrossRefGoogle Scholar
  3. Balbuena TS, Dias LLC, Martins MLB et al (2011) Challenges in proteome analyses of tropical plants. Braz J Plant Physiol 23:91–104CrossRefGoogle Scholar
  4. Bian F, Zheng C, Qu F et al (2010) Proteomic analysis of somatic embryogenesis in Cyclamen persicum mill. Plant Mol Biol Rep 28:22–31CrossRefGoogle Scholar
  5. Carpentier SC, Witters E, Laukens K et al (2005) Preparation of protein extracts from recalcitrant plant tissues: an evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics 5:2497–2507CrossRefPubMedGoogle Scholar
  6. Chan J, Calder G, Fox S, Lloyd C (2007) Cortical microtubule arrays undergo rotary movements in Arabidopsis hypocotyl epidermal cells. Nat Cell Biol 9:171–175CrossRefPubMedGoogle Scholar
  7. Corredor-Prado JP, Schmidt EC, Guerra MP et al (2015) Histodifferentiation and ultrastructure of nodular cultures from seeds of Vriesea friburgensis Mez var. paludosa (L.B. Smith) L.B. Smith and leaf explants of Vriesea reitzii Leme & A. Costa (Bromeliaceae). J Microsc Ultrastruct 3:200–209Google Scholar
  8. Corredor-Prado JP, De Conti D, Cangahuala-Inocente G et al (2016) Proteomic analysis in the induction of nodular cluster cultures in the bromeliad Vriesea reitzii Leme and Costa. Acta Physiol Plant 38:130CrossRefGoogle Scholar
  9. Dal Vesco LL, Guerra MP (2010) In vitro morphogenesis and adventitious shoot mass regeneration of Vriesea reitzii from nodular cultures. Sci Hortic 125:748–755CrossRefGoogle Scholar
  10. Dal Vesco LL, Stefenon VM, Welter LJ et al (2011) Induction and scale-up of Billbergia zebrina nodule cluster cultures: implications for mass propagation, improvement and conservation. Sci Hortic 128:515–522CrossRefGoogle Scholar
  11. Dal Vesco LL, Pescador R, Corredor Prado JP et al (2014a) In vitro propagation of Vriesea reitzii, a native epiphyte bromeliad from the Atlantic rainforest. Acta Sci Biol Sci 36:271–278CrossRefGoogle Scholar
  12. Dal Vesco LL, Vieira PM, Corredor JP et al (2014b) Induction and development of nodular cluster cultures in Vriesea reitzii (Leme and Costa), an endangered bromeliad from the Brazilian Atlantic Forest. J Hortic Sci Biotechnol 89:542–548CrossRefGoogle Scholar
  13. Davey MR, Anthony P (2010) Plant cell culture: essential methods. Wiley, HobokenCrossRefGoogle Scholar
  14. Dong CH, Xia GX, Hong Y et al (2001) ADF proteins are involved in the control of flowering and regulate F-actin organization, cell expansion, and organ growth in Arabidopsis. Plant Cell 13:1333–1346CrossRefPubMedPubMedCentralGoogle Scholar
  15. Duby G, Degand H, Faber AM, Boutry M (2010) The proteome complement of Nicotiana tabacum bright-yellow-2 culture cells. Proteomics 10:2545–2550CrossRefPubMedGoogle Scholar
  16. Duclercq J, Sangwan-Norreel B, Catterou M, Sangwan RS (2011) De novo shoot organogenesis: from art to science. Trends Plant Sci 16:597–606CrossRefPubMedGoogle Scholar
  17. Fortes AM, Santos F, Choi YH et al (2008) Organogenic nodule development in hop (Humulus lupulus L.): transcript and metabolic responses. BMC Genomics 9:445CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ghosh S, Pal A (2013) Proteomic analysis of cotyledonary explants during shoot organogenesis in Vigna radiata. Plant Cell Tissue Organ Cult 115:55–68CrossRefGoogle Scholar
  19. Guerra MP, Dal Vesco LL (2010) Protocols for In vitro propagation of ornamental plants. Business 589:47–66Google Scholar
  20. Gupta DB, Shekhar S, Agrawal L (2015) Plant proteomics: technologies and applications. In: Barh D, Khan MS, Davies E (eds) PlantOmics: the omics of plant science. Springer, New Delhi, pp 213–256Google Scholar
  21. Guzmán-García E, Sánchez-Romero C, Panis B, Carpentier SC (2013) The use of 2D-DIGE to understand the regeneration of somatic embryos in avocado. Proteomics 13:3498–3507CrossRefPubMedGoogle Scholar
  22. Holmes P, Farquharson R, Hall PJ, Rolfe BG (2006) Proteomic analysis of root meristems and the effects of acetohydroxyacid synthase-inhibiting herbicides in the root of Medicago truncatula. J Proteome Res 5:2309–2316CrossRefPubMedGoogle Scholar
  23. Iwata E, Ikeda S, Matsunaga S et al (2011) GIGAS CELL1, a novel negative regulator of the anaphase-promoting complex/cyclosome, is required for proper mitotic progression and cell fate determination in Arabidopsis. Plant Cell 23:4382–4393CrossRefPubMedPubMedCentralGoogle Scholar
  24. Komatsu S, Konishi H, Shen S, Yang G (2003) Rice proteomics. A step toward functional analysis of the rice genome. Mol Cell Proteomics 2:2–10CrossRefPubMedGoogle Scholar
  25. Libik-Konieczny M, Konieczny R, Surówka E et al (2012) Pathways of ROS homeostasis regulation in Mesembryanthemum crystallinum L. calli exhibiting differences in rhizogenesis. Plant Cell Tissue Organ Cult 110:123–131CrossRefGoogle Scholar
  26. Lonosky PM, Zhang X, Honavar VG et al (2004) A proteomic analysis of maize chloroplast biogenesis. Plant Physiol 134:560–574CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lyngved R, Renaut J, Hausman JF et al (2008) Embryo-specific proteins in Cyclamen persicum analyzed with 2-D DIGE. J Plant Growth Regul 27:353–369CrossRefGoogle Scholar
  28. Matthews RG, Drummond JT, Webb HK (1998) Cobalamin-dependent methionine synthase and serine hydroxymethyltransferase: targets for chemotherapeutic intervention? Adv Enzyme Regul 38:377–392CrossRefPubMedGoogle Scholar
  29. Mitrović A, Janošević D, Budimir S, Pristov Bogdanović J (2012) Changes in antioxidative enzymes activities during Tacitus bellus direct shoot organogenesis. Biol Plant 56:357–361CrossRefGoogle Scholar
  30. Morel G, Wetmore RH (1951) Tissue culture of monocotyledons. Am J Bot 38:138–140CrossRefGoogle Scholar
  31. Murashige T, Skoog F (1962) A revised medium for rapid growth and biossays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  32. Ovono PO, Kevers C, Dommes J (2009) Effects of reducing sugar concentration on in vitro tuber formation and sprouting in yam (Dioscorea cayenensis-D. rotundata complex). Plant Cell Tissue Organ Cult 99:55–59CrossRefGoogle Scholar
  33. Palama TL, Menard P, Fock I et al (2010) Shoot differentiation from protocorm callus cultures of Vanilla planifolia (Orchidaceae): proteomic and metabolic responses at early stage. BMC Plant Biol 10:1–18CrossRefGoogle Scholar
  34. Pan Z, Guan R, Zhu S, Deng X (2009) Proteomic analysis of somatic embryogenesis in Valencia sweet orange (Citrus sinensis Osbeck). Plant Cell Rep 28:281–289CrossRefPubMedGoogle Scholar
  35. Portis AR, Li C, Wang D, Salvucci ME (2008) Regulation of Rubisco activase and its interaction with Rubisco. J Exp Bot 59:1597–1604CrossRefPubMedGoogle Scholar
  36. Rech Filho A, Dal Vesco LL, Nodari RO et al (2005) Tissue culture for the conservation and mass propagation of Vriesea reitzii Leme and Costa, a bromeliad threatened of extinction from the Brazilian Atlantic Forest. Biodivers Conserv 14:1799–1808CrossRefGoogle Scholar
  37. Rech Filho A, Dal Vesco LL, Guerra MP (2009) Adventitious shoots from nodule cluster cultures of Vriesea reitzii: an endemic and endangered bromeliad from atlantic forest atlantic forest. Ciência Rural 39:909–912CrossRefGoogle Scholar
  38. Rode C, Gallien S, Heintz D et al (2011) Enolases: Storage compounds in seeds? Evidence from a proteomic comparison of zygotic and somatic embryos of Cyclamen persicum Mill. Plant Mol Biol 75:305–319CrossRefPubMedGoogle Scholar
  39. Rolletschek H, Weber H, Borisjuk L (2003) Energy status and its control on embryogenesis of legumes. Embryo photosynthesis contributes to oxygen supply and is coupled to biosynthetic fluxes. Plant Physiol 132:1196–1206CrossRefPubMedPubMedCentralGoogle Scholar
  40. Sambade A, Findlay K, Schäffner AR et al (2014) Actin-dependent and -independent functions of cortical microtubules in the differentiation of arabidopsis leaf trichomes. Plant Cell 26:1629–1644CrossRefPubMedPubMedCentralGoogle Scholar
  41. Sampathkumar A, Lindeboom JJ, Debolt S et al (2011) Live cell imaging reveals structural associations between the actin and microtubule cytoskeleton in arabidopsis. Plant Cell 23:2302–2313CrossRefPubMedPubMedCentralGoogle Scholar
  42. Scherer RF, Garcia AC, Fraga HPDF et al (2013) Nodule cluster cultures and temporary immersion bioreactors as a high performance micropropagation strategy in pineapple (Ananas comosus var. comosus). Sci Hortic 151:38–45CrossRefGoogle Scholar
  43. Scherer RF, de Freitas Fraga HP, Klabunde GF et al (2015) Global DNA methylation levels during the development of nodule cluster cultures and assessment of genetic fidelity of in vitro-regenerated pineapple plants (Ananas comosus var. comosus). J Plant Growth Regul 34:677–683CrossRefGoogle Scholar
  44. Sghaier-Hammami B, Drira N, Jorrín-Novo JV (2009) Comparative 2-DE proteomic analysis of date palm (Phoenix dactylifera L.) somatic and zygotic embryos. J Proteomics 73:161–177CrossRefPubMedGoogle Scholar
  45. Sharifi G, Ebrahimzadeh H, Ghareyazie B et al (2012) Identification of differentially accumulated proteins associated with embryogenic and non-embryogenic calli in saffron (Crocus sativus L.). Proteome Sci.  https://doi.org/10.1186/1477-5956-10-3 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Silva RDC, Carmo LST, Luis ZG et al (2014) Proteomic identification of differentially expressed proteins during the acquisition of somatic embryogenesis in oil palm (Elaeis guineensis Jacq.). J Proteomics 104:112–127CrossRefPubMedGoogle Scholar
  47. Smith LG, Oppenheimer DG (2005) Spatial control of cell expansion by the plant cytoskeleton. Annu Rev Cell Dev Biol 21:271–295CrossRefPubMedGoogle Scholar
  48. Sujatha M, Sivaraj N, Prasad MS (2000) Biochemical and histological changes during in vitro organogenesis in Jatropha integerrima. Biol Plant 43:167–171CrossRefGoogle Scholar
  49. Takáč T, Pechan T, Šamaj J (2011) Differential proteomics of plant development. J Proteomics 74:577–588CrossRefPubMedGoogle Scholar
  50. Tan BC, Chin CF, Liddell S, Alderson P (2013) Proteomic analysis of callus development in Vanilla planifolia Andrews. Plant Mol Biol Rep 31:1220–1229CrossRefGoogle Scholar
  51. Teixeira J, Pereira S, Queirós F, Fidalgo F (2006) Specific roles of potato glutamine synthetase isoenzymes in callus tissue grown under salinity: molecular and biochemical responses. Plant Cell Tissue Organ Cult 87:1–7CrossRefGoogle Scholar
  52. Vatankhah E, Niknam V, Ebrahimzadeh H (2010) Activity of antioxidant enzyme during in vitro organogenesis in Crocus sativus. Biol Plant 54:509–514CrossRefGoogle Scholar
  53. Westermeier R, Naven T (2002) Proteomics in practice: a laboratory manual of proteome analysis. Wiley, WeinheimCrossRefGoogle Scholar
  54. Yin L, Tao Y, Zhao K et al (2007) Proteomic and transcriptomic analysis of rice mature seed-derived callus differentiation. Proteomics 7:755–768CrossRefPubMedGoogle Scholar
  55. Yin L, Lan Y, Zhu L (2008) Analysis of the protein expression profiling during rice callus differentiation under different plant hormone conditions. Plant Mol Biol 68:597–617CrossRefPubMedGoogle Scholar
  56. Zhang S, Lemaux PG (2004) Molecular analysis of in vitro shoot organogenesis. CRC Crit Rev Plant Sci 23:325–335CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jenny Paola Corredor-Prado
    • 1
    Email author
  • Daniela De Conti
    • 2
  • Djalma Roecker Júnior
    • 2
  • Gabriela Claudia Cangahuala-Inocente
    • 2
  • Miguel Pedro Guerra
    • 2
  • Lirio Luiz Dal Vesco
    • 3
  • Rosete Pescador
    • 2
  1. 1.Programa de BiologíaUniversidad de SucreSincelejoColombia
  2. 2.Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-Graduação em Recursos Genéticos VegetaisUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  3. 3.Centro de Ciências AgráriasUniversidade Federal de Santa CatarinaCuritibanosBrazil

Personalised recommendations