Journal of Plant Growth Regulation

, Volume 35, Issue 2, pp 543–552 | Cite as

Endogenous Phytohormones in Spontaneously Regenerated Centaurium erythraea Rafn. Plants Grown In Vitro

  • Milana Trifunović-Momčilov
  • Václav Motyka
  • Ivana Č. Dragićević
  • Marija Petrić
  • Slađana Jevremović
  • Jiří Malbeck
  • Josef Holík
  • Petre I. Dobrev
  • Angelina Subotić
Article

Abstract

Phytohormones are important regulators of numerous developmental and physiological processes in plants. Spontaneous morphogenesis of the common centaury (Centaurium erythraea Rafn.) is possible on nutrition medium without addition of any plant growth regulator depending solely on endogenous phytohormone levels. Thus, this plant species represents a very good model system for the investigation of numerous physiological processes under phytohormonal control in vitro. We analysed the total amount of endogenous cytokinins (CKs) including the contents of their individual groups in shoots and roots of C. erythraea plants grown in vitro. The total amount of endogenous CKs was 1.4 times higher in shoots than in roots. Inactive or weakly active N-glucosides found to predominate in both organs of centaury plants, whereas free bases and O-glucosides represented only a small portion of the total CK pool. Consequently, centaury roots showed higher IAA content as well as IAA/free CK base ratios compared to shoots. Centaury tissues also showed increased levels of “stress hormones”. In contrast to SA, considerably higher levels of ABA were found in centaury shoots than in roots. Our results could serve as a basis for understanding and elucidating spontaneous de novo shoot organogenesis and further plant regeneration of C. erythraea in vitro.

Keywords

Common centaury Root explants Hormone metabolism Cytokinins Auxins Plant development Stress hormones 

Abbreviations for CKs Adopted and Modified According to Kamínek and Others (2000)

ADP

Adenosine diphosphate

AMP

Adenosine monophosphate

CK

Cytokinin

cisZ

cis-zeatin

cisZ7G

cis-zeatin 7-glucoside

cisZ9G

cis-zeatin 9-glucoside

cisZOG

cis-zeatin O-glucoside

cisZR

cis-zeatin 9-riboside

cisZRMP

cis-zeatin 9-riboside-5′-monophosphate

cisZROG

cis-zeatin 9-riboside O-glucoside

DHZ

Dihydrozeatin

DHZ7G

Dihydrozeatin 7-glucoside

DHZ9G

Dihydrozeatin 9-glucoside

DHZOG

Dihydrozeatin O-glucoside

DHZR

Dihydrozeatin 9-riboside

DHZRMP

Dihydrozeatin 9-riboside-5′-monophosphate

DHZROG

Dihydrozeatin 9-riboside O-glucoside

iP

N6-(∆2-isopentenyl)adenine

iP7G

N6-(∆2- isopentenyl)adenine 7-glucoside

iP9G

N6-(∆2- isopentenyl)adenine 9-glucoside

iPR

N6-(∆2- isopentenyl)adenine 9-riboside

iPRMP

N6-(∆2- isopentenyl)adenine 9-riboside-5′-monophosphate

transZ

trans-zeatin

transZ7G

trans-zeatin 7-glucoside

transZ9G

trans-zeatin 9-glucoside

transZOG

trans-zeatin O-glucoside

transZR

trans-zeatin 9-riboside

transZRMP

trans-zeatin 9-riboside-5′-monophosphate

transZROG

trans-zeatin 9-riboside O-glucoside

Notes

Acknowledgments

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. ON173015) and the Czech Science Foundation (P506/11/0774).

Authors contribution

M. Trifunović-Momčilov and M. Petrić contributed to all in vitro experiments. M. Trifunović-Momčilov and V. Motyka contributed in data analyses and manuscript preparation. J. Holík, J. Malbeck and P.I. Dobrev contributed to all experimental work considering endogenous plant hormones analyses. S. Jevremović contributed to all statistical analyses. I.Č. Dragićević contributed to data analyses and obtained result’s interpretation. A. Subotić supervised the whole study and also contributed in preparing the final manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

344_2015_9558_MOESM1_ESM.tif (1.1 mb)
Supplementary Fig. F1The rate of individual CK groups in total CK content in Centaurium erythraea shoots (a) and roots (b) grown in vitro
344_2015_9558_MOESM2_ESM.docx (14 kb)
Supplementary material 2 (DOCX 14 kb)

References

  1. Behr M, Motyka V, Weihmann F, Malbeck J, Deising HB, Wirsel SGR (2012) Remodelling of cytokinin metabolism at infection sites of Colletotrichum graminicola on maize leaves. Mol Plant Microbe Interact 25:1073–1082CrossRefPubMedGoogle Scholar
  2. Caboni E, D’Angeli S, Chiappetta A, Innocenti AM, Van Onckelen H, Damiano C (2002) Adventitious shoot regeneration from vegetative shoot apices in pear and putative role of cytokinin accumulation in the morphogenetic process. Plant Cell Tissue Org 70:199–206CrossRefGoogle Scholar
  3. D’Angeli S, Lauri P, Dewitte W, Van Onckelen H, Caboni E (2001) Factors affecting in vitro shoot formation from vegetative shoot apices of apple and relationship between organogenic response and cytokinin localisation. Plant Biosyst 135:95–100CrossRefGoogle Scholar
  4. Dello Ioio R, Linhares FS, Scacchi C-ME, Heidstra R, Costantino P, Sabatini S (2007) Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol 17:678–682CrossRefPubMedGoogle Scholar
  5. Dobrev PI, Kamínek M (2002) Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid phase extraction. J Chromatogr A 950:21–29CrossRefPubMedGoogle Scholar
  6. Dobrev PI, Vanková R (2012) Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues. In: Shabala S, Cuin TA (eds) Plant salt tolerance: methods and protocols, methods in molecular biology, vol 913. Springer, New York, pp 251–261CrossRefGoogle Scholar
  7. Dobrev PI, Havlíček L, Vágner M, Malbeck J, Kamínek M (2005) Purification and determination of plant hormones auxin and abscisic acid using solid phase extraction and two-dimensional high performance liquid chromatography. J Chromatogr A 1075:159–166CrossRefPubMedGoogle Scholar
  8. Dwivedi S, Vanková R, Motyka V, Herrera C, Zizkova E, Auer C (2010) Characterization of Arabidopsis thaliana mutant ror-1 (roscovitine-resistant) and its utilization in understanding of the role of cytokinin N-glucosylation pathway in plants. Plant Growth Regul 61:231–242CrossRefGoogle Scholar
  9. Emery RJN, Leport L, Barton JE, Turner NC, Atkins A (1998) cis-Isomers of cytokinins predominate in chickpea seeds throughout their development. Plant Physiol 117:1515–1523CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ezhova TA (2003) Genetic control of totipotency of plant cells in an in vitro culture. Russ J Dev Biol 34:197–204CrossRefGoogle Scholar
  11. Feher A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Org 74:201–228CrossRefGoogle Scholar
  12. Gajdošová S, Spíchal L, Kamínek M, Hoyerová K, Novák O, Dobrev PI, Galuszka P, Klíma P, Gaudinová A, Žižková E, Hanuš J, Dančák M, Trávníček B, Pešek B, Krupička M, Vaňková R, Strnad M, Motyka V (2011) Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J Exp Bot 62:2827–2840CrossRefPubMedGoogle Scholar
  13. Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25CrossRefGoogle Scholar
  14. Hirose N, Takei K, Kuroha T, Kamada-Nobusada T, Hayashi H, Sakakibara H (2008) Regulation of cytokinin biosynthesis, compartmentalization and translocation. J Exp Bot 59:75–83CrossRefPubMedGoogle Scholar
  15. Hothorn M, Dabi T, Chory J (2011) Structural basis for cytokinin recognition by Arabidopsis thaliana histidine kinase 4. N Chem Biol 7:766–768CrossRefGoogle Scholar
  16. Ikeuchi M, Sugimoto K, Iwase A (2013) Plant callus: mechanisms of induction and repression. Plant Cell 25:3159–3173CrossRefPubMedPubMedCentralGoogle Scholar
  17. Izumi K, Nakagawa S, Kobayashi M, Oshio H, Sakurai A, Takashi N (1988) Levels of IAA, cytokinins, ABA and ethylene in rice plants as affected by a gibberellin biosynthesis inhibitor, uniconazole-P. Plant Cell Physiol 29:97–104Google Scholar
  18. Jensen SR, Schripsema J (2002) Chemotaxonomy and pharmacology of Gentianaceae. In: Struve L, Albert V (eds) Gentianaceae: systematics and natural history. Cambridge University Press, Cambridge, pp 573–631Google Scholar
  19. Jones B, Gunneras SA, Petersson SV, Tarkowski P, Graham N, May S, Dolezal K, Sandberg G, Ljung K (2010) Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction. Plant Cell 22:2956–2969CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kamada-Nobusada T, Sakakibara H (2009) Molecular basis for cytokinin biosynthesis. Phytochemistry 70:444–449CrossRefPubMedGoogle Scholar
  21. Kamínek M, Březinová A, Gaudinová A, Motyka V, Vaňková R, Zažímalová E (2000) Purine cytokinins: a proposal for abbreviations. Plant Growth Regul 32:253–256CrossRefGoogle Scholar
  22. Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445:652–655CrossRefPubMedGoogle Scholar
  23. Letham DS (1994) Cytokinins as phytohormones-sites of biosynthesis, translocation and function of translocated cytokinin. In: Mok DWS, Mok MC (eds) Cytokinins: chemistry, activity and function. CRC Press, Boca Raton, pp 57–80Google Scholar
  24. Letham DS, Zhang R (1989) Cytokinin translocation and metabolism in lupin species II. New nucleotide metabolites of cytokinins. Plant Sci 64:161–165CrossRefGoogle Scholar
  25. Liu J, Mehdi S, Topping J, Tarkowski P, Lindsey K (2010) Modelling and experimental analysis of hormonal crosstalk in Arabidopsis. Mol Syst Biol 6, Article number 373:1–13Google Scholar
  26. Lomin SN, Krivosheev DM, Steklov MY, Arkhipov DV, Osolodkin DI, Schmülling T, Romanov GA (2015) Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands. J Exp Bot 66(7):1851–1863CrossRefPubMedPubMedCentralGoogle Scholar
  27. Malá J, Gaudinová A, Dobrev P, Eder J, Cvirková M (2005) Role of phytohormones in organogenic ability of elm multiplicated shoots. Biol Plant 50:8–14CrossRefGoogle Scholar
  28. Miyawaki K, Tarkowski P, Matsumoto-Kitano M, Kato T, Sato S, Tarkowska D, Tabata S, Sandberg G, Kakimoto T (2006) Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc Natl Acad Sci USA 103:16598–16603CrossRefPubMedPubMedCentralGoogle Scholar
  29. Moffatt B, Pethe C, Laloue M (1991) Metabolism of benzyladenine is impaired in a mutant of Arabidopsis thaliana lacking adenine phosphoribosyltransferase activity. Plant Physiol 95:900–908CrossRefPubMedPubMedCentralGoogle Scholar
  30. Mok DW, Mok MC (2001) Cytokinin metabolism and action. Annu Rev Plant Physio 52:89–118CrossRefGoogle Scholar
  31. Moncaleán P, Rodríguez A, Fernández B (2002) Plant growth regulators as putative physiological markers of developmental stage in Prunus persica. Plant Growth Regul 36:27–29CrossRefGoogle Scholar
  32. Montalbán IA, Novák O, Rolčik J, Strnad M, Moncaleán P (2013) Endogenous cytokinin and auxin profiles during in vitro organogenesis from vegetative buds of Pinus radiata adult trees. Physiol Plant 148:214–231CrossRefPubMedGoogle Scholar
  33. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479CrossRefGoogle Scholar
  34. Noodén LD, Letham DS (2003) Cytokinin metabolism and signaling in the soybean plant. Aust J Plant Physiol 20:639–653CrossRefGoogle Scholar
  35. Nordström A, Tarkowski P, Tarkowska D, Norbaek R, Astot C, Dolezal K, Sandberg G (2004) Auxin regulation of catokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin-regulated development. Proc Natl Acad Sci USA 101:8039–8044CrossRefPubMedPubMedCentralGoogle Scholar
  36. Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449CrossRefPubMedGoogle Scholar
  37. Schwartz SH, Qin X, Zeevaart JAD (2003) Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. Plant Physiol 131:1591–1601CrossRefPubMedPubMedCentralGoogle Scholar
  38. Singh S, Letham DS, Jameson PE, Zhang R, Parker CW (1988) Cytokinin biochemistry in relation to leaf senescence: IV. Cytokinin metabolism in soybean explants. Plant Physiol 88:788–794CrossRefPubMedPubMedCentralGoogle Scholar
  39. Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissue cultured in vitro. Sym Soc Exp Biol 11:118–131Google Scholar
  40. Stirk WA, Novák O, Strnad M, Van Staden J (2003) Cytokinins in macroalgae. Plant Growth Regul 41:13–24CrossRefGoogle Scholar
  41. Subotić A, Budimir S, Grubišić D, Momčilović I (2003/2004) Direct regeneration of shoots from hairy root cultures of Centaurium erythraea inoculated with Agrobacterium rhizogenes. Biol Plant 47:617–619Google Scholar
  42. Subotić A, Jevremović S, Grubišić D, Janković T (2009a) Spontaneous plant regeneration and production of secondary metabolites from hairy root cultures of Centaurium erythraea Rafn. In: Jain SM, Saxena PK (eds) Protocols for in vitro cultures and secondary metabolite analysis of aromatic and medicinal plants, methods in molecular biology, vol 547. Springer, Berlin, pp 205–217Google Scholar
  43. Subotić A, Jevremović S, Grubišić D (2009b) Influence of cytokinins on in vitro morphogenesis in root cultures of Centaurium erythraea—valuable medicinal plant. Sci Hortic 120:386–390CrossRefGoogle Scholar
  44. Tanaka M, Takei K, Kojima M, Sakakibara H, Mori H (2006) Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J 45:1028–1036CrossRefPubMedGoogle Scholar
  45. To JPC, Kieber JJ (2007) Cytokinin signaling: two-components and more. Trends Plant Sci 13:85–92CrossRefGoogle Scholar
  46. Tokunaga H, Kojima M, Kuroha T, Ishida T, Sugimoto K, Kiba T, Sakakibara H (2012) Arabidopsis lonely guy (LOG) multiple mutants reveal a central role of the LOG-dependent pathway in cytokinin activation. Plant J 69:355–365CrossRefPubMedGoogle Scholar
  47. Trifunović M, Cingel A, Simonović A, Jevremović S, Petrić M, Dragićević I, Motyka V, Dobrev PI, Zahajská L, Subotić A (2013) Overexpression of Arabidopsis cytokinin oxidase/dehydrogenase genes AtCKX1 and AtCKX2 in transgenic Centaurium erythraea Rafn. Plant Cell Tissue Org 115:139–150CrossRefGoogle Scholar
  48. Trifunović M, Motyka V, Cingel A, Subotić A, Jevremović S, Petrić M, Holík J, Malbeck J, Dobrev PI, Dragićević I (2015) Changes in cytokinin content and altered cytokinin homeostasis in AtCKX1 and AtCKX2-overexpressing centaury (Centaurium erythraea Rafn.) plants grown in vitro. Plant Cell Tiss Org 120:767–777CrossRefGoogle Scholar
  49. Tuteja N (2007) Abscisic acid and abiotic stress signalling. Plant Signal Behav 2:135–138CrossRefPubMedPubMedCentralGoogle Scholar
  50. Valentão P, Andrade PB, Silva E, Vincente A, Santos H, Bastos ML, Seabra R (2002) Methoxylated xanthones in the quality control of small centaury (Centaurium erythraea) flowering tops. J Agric Food Chem 50:460–463CrossRefPubMedGoogle Scholar
  51. Veach YK, Martin RC, Mok DW, Malbeck J, Vankova R, Mok MC (2003) O-Glucosylation of cis-zeatin in maize. Characterization of genes, enzymes and endogenous cytokinins. Plant Physiol 131:1374–1380CrossRefPubMedPubMedCentralGoogle Scholar
  52. Von Schwartzenberg K, Nunez MF, Blaschke H, Dobrev PI, Novák O, Motyka V, Strnad M (2007) Cytokinins in the bryophyte Physcomitrella patens: analyses of activity, distribution and cytokinin oxidase/dehydrogenase overexpression reveal the role of extracellular cytokinins. Plant Physiol 145:786–800CrossRefGoogle Scholar
  53. Wawrosch C, Maskay N, Kopp B (1999) Micropropagation of the threatened Nepalese medicinal plant Swertia chirata Buch.–Ham. ex Wall. Plant Cell Rep 18:997–1001CrossRefGoogle Scholar
  54. Werner T, Schmülling T (2009) Cytokinin action in plant development. Curr Opin Plant Biol 12:527–538CrossRefPubMedGoogle Scholar
  55. Werner T, Motyka V, Strnad M, Schmülling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci USA 98:10487–10492CrossRefPubMedPubMedCentralGoogle Scholar
  56. Werner T, Hanus J, Holub J, Schmülling T, Van Onckelen H, Strnad M (2003a) New cytokinin metabolites in IPT transgenic Arabidopsis thaliana plants. Physiol Plant 118:127–137CrossRefPubMedGoogle Scholar
  57. Werner T, Motyka V, Laucou V, Stems R, Van Onckelen H, Schmülling T (2003b) Cytokinin deficient transgenic Arabidopsis plant show multiple developmental alterations indicating opposite function of cytokinins in the regulation of shoot and root meristem sctivity. Plant Cell 15:2532–2550CrossRefPubMedPubMedCentralGoogle Scholar
  58. Xiong L, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133:29–36CrossRefPubMedPubMedCentralGoogle Scholar
  59. Yonekura-Sakakibara K, Kojima M, Yamaya T, Sakakibara H (2004) Molecular characterization of cytokinin-responsive histidine kinases in maize. Differential ligand preferences and response to cis-zeatin. Plant Physiol 134:1654–1664CrossRefPubMedPubMedCentralGoogle Scholar
  60. Záveská Drábková L, Dobrev PI, Motyka V (2015) Phytohormone profiling across the bryophytes. PLoS One 10(5):e0125411CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Milana Trifunović-Momčilov
    • 1
  • Václav Motyka
    • 2
  • Ivana Č. Dragićević
    • 3
  • Marija Petrić
    • 1
  • Slađana Jevremović
    • 1
  • Jiří Malbeck
    • 2
  • Josef Holík
    • 2
  • Petre I. Dobrev
    • 2
  • Angelina Subotić
    • 1
  1. 1.Institute for Biological Research “Siniša Stanković”University of BelgradeBelgradeSerbia
  2. 2.Institute of Experimental BotanyAcademy of Sciences of the Czech RepublicPrague 6Czech Republic
  3. 3.Faculty of BiologyUniversity of BelgradeBelgradeSerbia

Personalised recommendations