Advertisement

Journal of Plant Growth Regulation

, Volume 34, Issue 4, pp 761–794 | Cite as

How Jasmonates Earned their Laurels: Past and Present

  • Claus Wasternack
Article

Abstract

The histories of research regarding all plant hormones are similar. Identification and structural elucidation have been followed by analyses of their biosynthesis, distributions, signaling cascades, roles in developmental or stress response programs, and crosstalk. Jasmonic acid (JA) and its derivatives comprise a group of plant hormones that were discovered recently, compared to auxin, abscisic acid, cytokinins, gibberellic acid, and ethylene. Nevertheless, there have been tremendous advances in JA research, following the general progression outlined above and parallel efforts focused on several other “new” plant hormones (brassinosteroids, salicylate, and strigolactones). This review focuses on historical aspects of the identification of jasmonates, and characterization of their biosynthesis, distribution, perception, signaling pathways, crosstalk with other hormones and roles in plant stress responses and development. The aim is to illustrate how our present knowledge on jasmonates was generated and how that influences current efforts to extend our knowledge.

Keywords

Historical aspects Jasmonic acid Perception Signaling Crosstalk Stress responses Development Applied aspects 

Notes

Acknowledgments

These historical remarks on jasmonate research were strongly facilitated by the research on jasmonates in the former Institute of Biochemistry of Plants (now Leibniz Institute of Plant Biochemistry, IPB) in Halle (Saale) (Germany). I thank the IPB and funding agencies in Germany such as Deutsche Forschungsgemeinschaft (DFG) for continuous support of jasmonate research at the IPB for more than 20 years. Furthermore, I thank B. Parthier, the inaugurator of molecular JA research in Halle (Saale), and my long-term collaborators B. Hause (IPB, Halle) and I. Feussner (Göttingen, Germany) for seminal collaboration. I thank all former members of the JA group at the IPB for stimulating contributions. I thank M. Strnad (Palacky University of Olomouc, Czech Republic) for the possibility to write this review in the framework of my visiting professorship at this University. I thank for financial support by the Palacky University Olomouc, Czech Republic, in the program Interhana: Operational Program Education for Competitiveness—European Social Fund (project CZ.1.07/2.3.00/20.0165) and by the Czech Ministry of Education grant from the National program for Sustainability (L07204). Thanks to all who provided a portrait. I am also grateful to B. Hause (IPB), O. Miersch (Halle, Saale), J. Ueda (Osaka, Japan), P. Staswick (Nebraska, USA), and G. A. Howe (East Lansing, USA) for critical reading of the manuscript and Sees-editing Ltd. (UK) for improving the English.

References

  1. Acosta IF, Laparra H, Romero SP, Schmelz E, Hamberg M, Mottinger JP, Moreno MA, Dellaporta SL (2009) tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science 323:262–265PubMedCrossRefGoogle Scholar
  2. Acosta IF, Gasperini D, Chételat A, Stolz S, Santuari L, Farmer EE (2013) Role of NINJA in root jasmonate signaling. Proc Natl Acad Scie USA 110:15473–15478CrossRefGoogle Scholar
  3. Adie BAT, Perez-Perez J, Perez-Perez MM, Godoy M, Sanchez-Serrano J-J, Schmelz EA, Solano R (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19:1665–1681PubMedCentralPubMedCrossRefGoogle Scholar
  4. Alborn H, Turlings T, Jones T, Stenhagen G, Loughirn J, Tumlinson J (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949CrossRefGoogle Scholar
  5. Alborn H, Jones A, Stenhagen G, Tumlinson J (2000) Identification and synthesis of volicitin and related components from beet armyworm oral secretions. J Chem Ecol 26:203–220CrossRefGoogle Scholar
  6. Aldrige D, Galt S, Giles D, Turner W (1971) Metabolites of Lasiodiplodia theobromae. J Chem Soc C:1623–1627Google Scholar
  7. Andreou A, Feussner I (2009) Lipoxygenases - Structure and reaction mechanism. Phytochemistry 70:1504–1510PubMedCrossRefGoogle Scholar
  8. Andresen I, Becker W, Schlüter K, Burges J, Parthier B, Apel K (1992) The identification of leaf thionin as one of the main jasmonate-induced proteins of barley (Hordeum vulgare). Plant Mol Biol 19:193–204PubMedCrossRefGoogle Scholar
  9. Bachmann A, Hause B, Maucher H, Garbe E, Vörös K, Weichert H, Wasternack C, Feussner I (2002) Jasmonate-induced lipid peroxidation in barley leaves initiated by distinct 13-LOX forms of chloroplasts. Biol Chem 383:1645–1657PubMedCrossRefGoogle Scholar
  10. Baker T, Nishida R, Roelofs W (1981) Close-range attraction of female oriental fruit moths to herbal scent of male hairpencil. Science 214:1359–1361PubMedCrossRefGoogle Scholar
  11. Bakker PA, Berendsen RL, Doornbos RF, Wintermans PC, Pieterse CM (2013) The rhizosphere revisited: root microbiomics. Front Plant Sci 4:165PubMedCentralPubMedCrossRefGoogle Scholar
  12. Balazadeh S (2014) Stay-green not always stays green. Mol Plant 7:1264–1266PubMedCrossRefGoogle Scholar
  13. Baldwin IT, Halitschke R, Kessler A, Schittko U (2001) Merging molecular and ecological approaches in plant-insect interactions. Curr Opin Plant Biol 4:351–358PubMedCrossRefGoogle Scholar
  14. Ballaré CL (2011) Jasmonate-induced defenses: a tale of intelligence, collaborators and rascals. Trends Plant Sci 16:249–257PubMedCrossRefGoogle Scholar
  15. Bell E, Creelman R, Mullet J (1995) A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis. Proc Natl Acad Sci USA 92:8675–8679PubMedCentralPubMedCrossRefGoogle Scholar
  16. Berger S, Bell E, Mullet J (1996) Two methyl jasmonate-insensitive mutants show altered expression of AtVsp in response to methyl jasmonate and wounding. Plant Physiol 111:525–531PubMedCentralPubMedGoogle Scholar
  17. Bhosale R, Jewell J, Hollunder J, Koo A, Vuyisteke M, Michoel T, Hilson P, Goossens A, Howe G, Brose J, Maere S (2013) Predicting gene function from uncontrolled expression variation among individual wild-type arabidopsis plants. Plant Cell 25:2865–2877PubMedCentralPubMedCrossRefGoogle Scholar
  18. Birkenmeier G, Ryan CA (1998) Wound signaling in tomato plants: evidence that ABA is not a primary signal for defense gene activation. Plant Physiol 117:687–693PubMedCentralPubMedCrossRefGoogle Scholar
  19. Blechert S, Brodschelm W, Hölder S, Kammerer L, Kutchan T, Mueller M, Xia Z-Q, Zenk M (1995) The octadecanoid pathway: signal molecules for the regulation of secondary pathways. Proc Natl Acad Sci USA 92:4099–4105PubMedCentralPubMedCrossRefGoogle Scholar
  20. Blechert S, Bockelmann C, Füßlein M, von Schrader T, Stelmach B, Niesel U, Weiler E (1999) Structure-activity analyses reveal the existence of two separate groups of active octadecanoids in elicitation of the tendril-coiling response of Bryonia dioica Jacq. Planta 207:470–479CrossRefGoogle Scholar
  21. Bosch M, Wright L, Gershenzon J, Wasternack C, Hause B, Schaller A, Stintzi A (2014) Jasmonic acid and its precursor 12-oxophytodienoic acid control different aspects of constitutive and induced herbivore defenses in tomato. Plant Physiol 166:396–410PubMedCentralPubMedCrossRefGoogle Scholar
  22. Boter M, Ruíz-Rivero O, Abdeen A, Prat S (2004) Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev 18:1577–1591PubMedCentralPubMedCrossRefGoogle Scholar
  23. Böttcher C, Pollmann S (2009) Plant oxylipins: plant responses to 12-oxo-phytodienoic acid are governed by its specific structural and functional properties. FEBS J 276:4693–4704PubMedCrossRefGoogle Scholar
  24. Böttcher C, Weiler E (2007) cyclo -Oxylipin-galactolipids in plants: occurrence and dynamics. Planta 226:629–637PubMedCrossRefGoogle Scholar
  25. Bowles D (1997) The wound response of tomato plants. Essays Biochem 32Google Scholar
  26. Brash AR (2009) Mechanistic aspects of CYP74 allene oxide synthases and related cytochrome P450 enzymes. Phytochemistry 70:1522–1531PubMedCentralPubMedCrossRefGoogle Scholar
  27. Brash AR, Baertschi S, Ingram C, Harris T (1987) On non-cyclooxygenase protaglandin synthesis in the sea whip coral, Plexaura homomalla: an 8(R)-lipxygenase pathway leads to formation of an alpha-ketol and racemic prostanoid. J Biol Chem 262:15829–15839PubMedGoogle Scholar
  28. Brash AR, Baertschi S, Ingram C, Harris T (1988) Isolation and characterization of natural allene oxides: unstable intermediates in the metabolism of lipid hydroperoxides. Proc Natl Acad Sci USA 85:3382–3386PubMedCentralPubMedCrossRefGoogle Scholar
  29. Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C, Kiddle S, Y-s Kim, Penfold CA, Jenkins D, Zhang C, Morris K, Jenner C, Jackson S, Thomas B, Tabrett A, Legaie R, Moore JD, Wild DL, Ott S, Rand D, Beynon J, Denby K, Mead A, Buchanan-Wollaston V (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23:873–894PubMedCentralPubMedCrossRefGoogle Scholar
  30. Breithaupt C, Strassner J, Breitinger U, Huber R, Macheroux P, Schaller A, Clausen T (2001) X-Ray structure of 12-oxophytodienoate reductase 1 provides structural insight into substrate binding and specificity within the family of OYE. Structure 9:419–429PubMedCrossRefGoogle Scholar
  31. Breithaupt C, Kurzbauer R, Lilie H, Schaller A, Strassner J, Huber R, Macheroux P, Clausen T (2006) Crystal structure of 12-oxophytodienoate reductase 3 from tomato: self-inhibition by dimerization. Proc Natl Acad Sci USA 103:14337–14342PubMedCentralPubMedCrossRefGoogle Scholar
  32. Browse J (2009a) Jasmonate passes muster: a receptor and targets for the defense hormone. Annu Rev Plant Biol 60:183–205PubMedCrossRefGoogle Scholar
  33. Browse J (2009b) Jasmonate: Preventing the maize tassel from getting in touch with his feminine side. Sci Signal 2:pe9Google Scholar
  34. Browse J (2009c) The power of mutants for investigating jasmonate biosynthesis and signaling. Phytochemistry 70:1539–1546PubMedCrossRefGoogle Scholar
  35. Campos M, Kang J-H, Howe G (2014) Jasmonate-triggered plant immunity. J Chem Ecol 40:657–675PubMedCentralPubMedCrossRefGoogle Scholar
  36. Castillo MC, Martinez C, Buchala A, Metraux J-P, Leon J (2004) Gene-specific involvement of β-oxidation in wound-activated responses in Arabidopsis. Plant Physiol 135:85–94PubMedCentralCrossRefGoogle Scholar
  37. Çevik V, Kidd BN, Zhang P, Hill C, Kiddle S, Denby KJ, Holub EB, Cahill DM, Manners JM, Schenk PM, Beynon J, Kazan K (2012) MEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in Arabidopsis. Plant Physiol 160:541–555PubMedCentralPubMedCrossRefGoogle Scholar
  38. Chaudhry B, Müller-Uri F, Cameron-Mills V, Gough S, Simpson D, Skriver K, Mundy J (1994) The barley 60 kDa jasmonate-induced protein (JIP60) is a novel ribosome-inactivating protein. Plant J 6:815–824PubMedCrossRefGoogle Scholar
  39. Chauvin A, Caldelari D, Wolfender J-L, Farmer EE (2013) Four 13-lipoxygenases contribute to rapid jasmonate synthesis in wounded Arabidopsis thaliana leaves: a role for lipoxygenase 6 in responses to long-distance wound signals. New Phytol 197:566–575PubMedCrossRefGoogle Scholar
  40. Chehab EW, Kaspi R, Savchenko T, Rowe H, Negre-Zakharov F, Kliebenstein D, Dehesh K (2008) Distinct roles of jasmonates and aldehydes in plant-defense responses. PLoS ONE 3:e1904PubMedCentralPubMedCrossRefGoogle Scholar
  41. Chehab EW, Kim S, Savchenko T, Kliebenstein D, Dehesh K, Braam J (2011) Intronic T-DNA insertion renders Arabidopsis opr3 a conditional jasmonic acid-producing mutant. Plant Physiol 156:770–778PubMedCentralPubMedCrossRefGoogle Scholar
  42. Chen H, Wilkerson CG, Kuchar JA, Phinney BS, Howe GA (2005) Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut. Proc Natl Acad Sci USA 102:19237–19242PubMedCentralPubMedCrossRefGoogle Scholar
  43. Chen Q, Sun J, Zhai Q, Zhou W, Qi L, Xu L, Wang B, Chen R, Jiang H, Qi J, Li X, Palme K, Li C (2011) The basic helix-loop-helix transcription factor MYC2 directly represses PLETHORA expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis. Plant Cell 23:3335–3352PubMedCentralPubMedCrossRefGoogle Scholar
  44. Chen R, Jiang H, Li L, Zhai Q, Qi L, Zhou W, Liu X, Li H, Zheng W, Sun J, Li C (2012) The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors. Plant Cell 24:2898–2916PubMedCentralPubMedCrossRefGoogle Scholar
  45. Chen Y-L, Lee C-Y, Cheng K-T, Huang R-N, Nam H, Chen Y-R (2014) Quantitative peptidomics study reveals that a wound-induced peptide from pr-1 regulates immune signaling in tomato. Plant Cell 26:4135–4148PubMedCentralPubMedCrossRefGoogle Scholar
  46. Cheng H, Song S, Xiao L, Soo HM, Cheng Z, Xie D, Peng J (2009) Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genet 5:e1000440PubMedCentralPubMedCrossRefGoogle Scholar
  47. Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, Garcia-Casado G, Lopez-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671PubMedCrossRefGoogle Scholar
  48. Chini A, Boter M, Solano R (2009) Plant oxylipins: COI1/JAZs/MYC2 as the core jasmonic acid-signalling module. FEBS J 276:4682–4692PubMedCrossRefGoogle Scholar
  49. Chrombie L, Elliot M (1961) Chemistry of pyrethrins. Fortschr Chem Org Naturstoffe 19:120–164Google Scholar
  50. Chung HS, Niu Y, Browse J, Howe GA (2009) Top hits in contemporary JAZ: an update on jasmonate signaling. Phytochemistry 70:1547–1559PubMedCentralPubMedCrossRefGoogle Scholar
  51. Clouse SD (2002) Brassinosteroid signal transduction: clarifying the pathway from ligand perception to gene expression. Mol Cell 10:973–982PubMedCrossRefGoogle Scholar
  52. Cohen S, Flescher E (2009) Methyl jasmonate: a plant stress hormone as an anti-cancer drug. Phytochemistry 70:1600–1609PubMedCrossRefGoogle Scholar
  53. Conconi A, Smerdon M, Howe G, Ryan C (1996) The octadecanoid signalling pathway in plants mediates a response to ultraviolet radiation. Nature 383:826–829PubMedCrossRefGoogle Scholar
  54. Conrath U (2011) Molecular aspects of defence priming. Trends Plant Sci 16:524–531PubMedCrossRefGoogle Scholar
  55. Cross B, Webster G (1970) New metabolites of Gibberella fujikuroi. Part XV. N-jasmonoyl- and N-dihydrojasmonoyl-isoleucine. J Chem Soc C 1970:1839–1842CrossRefGoogle Scholar
  56. Dammann C, Rojo E, Sanchez-Serrano J (1997) Abscisic acid and jasmonic acid activate wound-inducible genes in potato through separate, organ-specific signal transduction pathways. Plant J 11:773–782PubMedCrossRefGoogle Scholar
  57. Dathe W, Rönsch H, Preiss A, Schade W, Sembdner G, Schreiber K (1981) Endogenous plant hormones of the broad bean, Vicia faba L. (–)-Jasmonic acid, a plant growth inhibitor in pericarp. Planta 155:530–535CrossRefGoogle Scholar
  58. Dave A, Hernández ML, He Z, Andriotis VME, Vaistij FE, Larson TR, Graham IA (2011) 12-Oxo-phytodienoic acid accumulation during seed development represses seed germination in Arabidopsis. Plant Cell 23:583–599PubMedCentralPubMedCrossRefGoogle Scholar
  59. De Geyter N, Gholami A, Goormachtig S, Goossens A (2012) Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends Plant Sci 17:349–359PubMedCrossRefGoogle Scholar
  60. De Leon P, Schmelz EA, Gaggero C, Castro A, Alvarez A, Montesano M (2012) Physcomitrella patens activates reinforcement of the cell wall, programmed cell death and accumulation of evolutionary conserved defence signals, such as salicylic acid and 12-oxo-phytodienoic acid, but not jasmonic acid upon Botrytis cinerea infection. Mol Plant Physiol 13:960–974Google Scholar
  61. Demole E, Lederer E, Mercier D (1962) Isolement et détermination de la structure du jasmonate de méthyle, constituant odorant charactéristique de lèssence de jasmin. Helv Chim Acta 45:675–685CrossRefGoogle Scholar
  62. Devoto A, Nieto-Rostro M, Xie D, Ellis C, Harmston R, Patrick E, Davis J, Sherratt L, Coleman M, Turner J (2002) COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J 32:457–466PubMedCrossRefGoogle Scholar
  63. Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445PubMedCrossRefGoogle Scholar
  64. Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci 15:167–175PubMedCrossRefGoogle Scholar
  65. Doares S, Narvaez-Vasquez J, Conconi A, Ryan CA (1995) Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol 108:1741–1746PubMedCentralPubMedGoogle Scholar
  66. Doherty H, Selvendran R, Bowles D (1988) The wound response of tomato plants can be inhibited by aspirin and related hydroxy-benzoic acids. Physiol Mol Plant Pathol 33:377–384CrossRefGoogle Scholar
  67. Dorka R, Miersch O, Wasternack C, Weik P (2007) Chronobiological phenomena and seasonal changes in jasmonate levels during the course of the year and under constant conditions in mistletoe (Viscum album L.). Phytomedicine 14(Suppl VII):23Google Scholar
  68. Dunaeva M, Goebel C, Wasternack C, Parthier B, Goerschen E (1999) The jasmonate-induced 60 kDa protein of barley exhibits N-glycosidase activity in vivo. FEBS Lett 452:263–266PubMedCrossRefGoogle Scholar
  69. Facchini PJ, Bohlmann J, Covello PS, De Luca V, Mahadevan R, Page JE, Ro D-K, Sensen CW, Storms R, Martin VJJ (2012) Synthetic biosystems for the production of high-value plant metabolites. Trends Biotech 30:127–131CrossRefGoogle Scholar
  70. Farmaki T, Sanmartin M, Jimenez P, Paneque M, Sanz C, Vancanneyt G, Leon J, Sanchez-Serrano J (2007) Differential distribution of the lipoxygenase pathway enzymes within potato chloroplasts. J Exp Bot 58:555–568PubMedCrossRefGoogle Scholar
  71. Farmer EE (2001) Surface-to-air signals. Nature 411:854–856PubMedCrossRefGoogle Scholar
  72. Farmer EE (2007) Plant biology: jasmonate perception machines. Nature 448:659–660PubMedCrossRefGoogle Scholar
  73. Farmer EE (2014) Leaf defence. Oxford University Press, OxfordGoogle Scholar
  74. Farmer EE, Mueller M (2013) ROS-mediated lipid peroxiidation and RES-activated signaling. Ann Rev Plant Biol 64:429–450CrossRefGoogle Scholar
  75. Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87:7713–7716PubMedCentralPubMedCrossRefGoogle Scholar
  76. Farmer EE, Johnson R, Ryan CA (1992) Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiol 98:995–1002PubMedCentralPubMedCrossRefGoogle Scholar
  77. Farmer EE, Alméras E, Krishnamurthy V (2003) Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr Opin Plant Biol 6:372–378PubMedCrossRefGoogle Scholar
  78. Farmer EE, Howe G, Pearce G, Schaller A (2008) Obituary: Clarence A. “Bud” Ryan. Phytochemistry 69:1454–1456PubMedCrossRefGoogle Scholar
  79. Farmer EE, Gasperini D, Acosta I (2014) The squeeze cell hypothesis for the activation of jasmonate synthesis in response to wounding. New Phytol 204:282–288PubMedCrossRefGoogle Scholar
  80. Felton GW, Tumlinson JH (2008) Plant-insect dialogs: complex interactions at the plant-insect interface. Curr Opin Plant Biol 11:457–463PubMedCrossRefGoogle Scholar
  81. Feng S, Ma L, Wang X, Xie D, Dinesh-Kumar SP, Wei N, Deng XW (2003) The COP9 signalosome interacts physically with SCFCOI1 and modulates jasmonate responses. Plant Cell 15:1083–1094PubMedCentralPubMedCrossRefGoogle Scholar
  82. Feussner I, Wasternack C (2002) The lipoxygenase pathway. Ann Rev Plant Biol 53:275–297CrossRefGoogle Scholar
  83. Feussner I, Hause B, Vörös K, Parthier B, Wasternack C (1995) Jasmonate-induced lipoxygenase forms are localized in chloroplasts of barley leaves (Hordeum vulgare cv. Salome). Plant J 7:949–957CrossRefGoogle Scholar
  84. Feussner I, Balkenhohl T, Porzel A, Kühn H, Wasternack C (1997) Structural elucidation of oxygenated storage lipids in cucumber cotyledons - implication of lipid body lipoxygenase in lipid mobilization during germination. J Biol Chem 272:21635–21641PubMedCrossRefGoogle Scholar
  85. Feys B, Benedetti C, Penfold C, Turner J (1994) Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistent to a bacterial pathogen. Plant Cell 6:751–759PubMedCentralPubMedCrossRefGoogle Scholar
  86. Fingrut O, Flescher E (2002) Plant stress hormones suppress the proliferation and induce apoptosis in human cancer cells. Leukemia 16:608–616PubMedCrossRefGoogle Scholar
  87. Fonseca S, Chico JM, Solano R (2009a) The jasmonate pathway: the ligand, the receptor and the core signalling module. Curr Opin Plant Biol 12:539–547PubMedCrossRefGoogle Scholar
  88. Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009b) (+)-7-iso-jasmonoyl-l-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344–350PubMedCrossRefGoogle Scholar
  89. Frago E, Dicke M, Godfray H (2012) Insect symbionts as hidden players in insect–plant interactions. Trends Ecol & Evol 27:705–711CrossRefGoogle Scholar
  90. Froehlich J, Itoh A, Howe GA (2001) Tomato allene oxide synthase and fatty acid hydroperoxide lyase, two cytochrome P450 s involved in oxylipin metabolism, are targeted to different membranes of chloroplast envelope. Plant Physiol 125:306–317PubMedCentralPubMedCrossRefGoogle Scholar
  91. Fukui H, Koshimizu K, Usuda S, Yamazaki Y (1977) Isolation of plant growth regulators from seeds. Agric Biol Chem 41:175–180CrossRefGoogle Scholar
  92. Garcion C, Metraux J-P (2006) Salicylic acid. In: Hedden P, Thomas S (eds) Plant Hormone Signaling. Blackwell Publishing, Harpenden, pp 230–262Google Scholar
  93. Gatz C (2013) From pioneers to team players: tGA transcription factors provide a molecular link between different stress pathways. Mol Plant Microbe Interact 26:151–159PubMedCrossRefGoogle Scholar
  94. Gfeller A, Baerenfaller K, Loscos J, Chételat A, Baginsky S, Farmer EE (2011) Jasmonate controls polypeptide patterning in undamaged tissue in wounded Arabidopsis leaves. Plant Physiol 156:1797–1807PubMedCentralPubMedCrossRefGoogle Scholar
  95. Gidda S, Miersch O, Levitin A, Schmidt J, Wasternack C, Varin L (2003) Biochemical and molecular characterization of a hydroxyjasmonate sulfotransferase from Arabidopsis thaliana. J Biol Chem 278:17895–17900PubMedCrossRefGoogle Scholar
  96. Glauser G, Grata E, Dubugnon L, Rudaz S, Farmer EE, Wolfender J-L (2008) Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding. J Biol Chem 283:16400–16407PubMedCrossRefGoogle Scholar
  97. Glauser G, Boccard J, Rudaz S, Wolfender J-L (2009a) Mass spectrometry-based metabolomics oriented by correlation analysis for wound-induced molecule discovery: identification of a novel jasmonate glucoside. Phytochem Anal 21:95–101CrossRefGoogle Scholar
  98. Glauser G, Dubugnon L, Mousavi SAR, Rudaz S, Wolfender J-L, Farmer EE (2009b) Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis. J Biol Chem 284:34506–34513PubMedCentralPubMedCrossRefGoogle Scholar
  99. Göbel C, Feussner I (2009) Methods for the analysis of oxylipins in plants. Phytochemistry 70:1485–1503PubMedCrossRefGoogle Scholar
  100. Görschen E, Dunaeva M, Hause B, Reeh I, Wasternack C, Parthier B (1997a) Expression of the ribosome-inactivating protein JIP60 from barley in transgenic tobacco leads to an abnormal phenotype and alterations on the level of translation. Planta 202:470–478PubMedCrossRefGoogle Scholar
  101. Görschen E, Dunaeva M, Reeh I, Wasternack C (1997b) Overexpression of the jasmonate-inducible 23 kDa protein (JIP 23) from barley in transgenic tobacco leads to the repression of leaf proteins. FEBS Lett 419:58–62PubMedCrossRefGoogle Scholar
  102. Green T, Ryan CA (1972) Wound-induced proteinase inhibitor in plant defense: a possible defense mechanism against insects. Science 175:776–777PubMedCrossRefGoogle Scholar
  103. Gundlach H, Müller M, Kutchan T, Zenk M (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Nat Acad Sci USA 89:2389–2393PubMedCentralPubMedCrossRefGoogle Scholar
  104. Guo Y, Gan S-S (2012) Convergence and divergence in gene expression profiles induced by leaf senescence and 27 senescence-promoting hormonal, pathological and environmental stress treatments. Plant Cell Environ 35:644–655PubMedCrossRefGoogle Scholar
  105. Gutjahr C, Paszkowski U (2009) Weights in the balance: jasmonic acid and salicylic acid signaling in root-biotroph interactions. Mol Plant-Microbe Interact 22:763–772PubMedCrossRefGoogle Scholar
  106. Halitschke R, Baldwin IT (2004) Jasmonates and related compounds in plant-insect interactions. J Plant Growth Reg 23:238–245CrossRefGoogle Scholar
  107. Hamberg M (1988) Biosynthesis of 12-oxo-10,15(Z)-phytodienoic acid: identification of an allene oxide cyclase. Biochem Biophys Res Commun 156:543–550PubMedCrossRefGoogle Scholar
  108. Hamberg M, Fahlstadius P (1990) Allene oxide cyclase: a new enzyme in plant lipid metabolism. Arch Biochem Biophys 276:518–526PubMedCrossRefGoogle Scholar
  109. Hamberg M, Gardner HW (1992) Oxylipin pathway to jasmonates: biochemistry and biological significance. Biochim Biophys Acta (BBA) - Lipids and Lipid. Metabolism 1165:1–18Google Scholar
  110. Hamberg H, Miersch O, Sembdner G (1988) Absolute configuration of 12-oxo-10,15(Z)-phytodienoic acid. Lipids 23:521–524CrossRefGoogle Scholar
  111. Hannapel DJ (2010) A model system of development regulated by the long-distance transport of mRNA. J Int Plant Biol 52:40–52CrossRefGoogle Scholar
  112. Hao J, Tu L, Hu H, Tan J, Deng F, Tang W, Nie Y, Zhang X (2012) GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system. J Exp Bot 63:6267–6281PubMedCentralPubMedCrossRefGoogle Scholar
  113. Hause B, Schaarschmidt S (2009) The role of jasmonates in mutualistic symbioses between plants and soil-born microorganisms. Phytochemistry 70:1589–1599PubMedCrossRefGoogle Scholar
  114. Hause B, Zur Nieden U, Lehmann J, Wasternack C, Parthier B (1994) Intracellular localization of jasmonate-induced proteins in barley leaves. Bot Acta 107:333–341CrossRefGoogle Scholar
  115. Hause B, Demus U, Teichmann C, Parthier B, Wasternack C (1996) Developmental and tissue-specific expression of JIP-23, a jasmonate-inducible protein of barley. Plant Cell Physiol 37:641–649PubMedCrossRefGoogle Scholar
  116. Hause B, Stenzel I, Miersch O, Maucher H, Kramell R, Ziegler J, Wasternack C (2000) Tissue-specific oxylipin signature of tomato flowers - allene oxide cyclase is highly expressed in distinct flower organs and vascular bundles. Plant J 24:113–126PubMedCrossRefGoogle Scholar
  117. Hedden P, Thomas S (2006) Plant hormone signaling. Monogragraph BlackwellGoogle Scholar
  118. Heitz T, Widemann E, Lugan R, Miesch L, Ullmann P, Désaubry L, Holder E, Grausem B, Kandel S, Miesch M, Werck-Reichhart D, Pinot F (2012) Cytochromes P450 CYP94C1 and CYP94B3 catalyze two successive oxidation steps of plant hormone jasmonoyl-isoleucine for catabolic turnover. J Biol Chem 287:6296–6306PubMedCentralPubMedCrossRefGoogle Scholar
  119. Helder H, Miersch O, Vreugdenhil D, Sembdner G (1993) Occurrence of hydroxylated jasmonic acids in leaflets of Solanum demissum plants grown under long- and short-day conditions. Physiol Plant 88:647–653CrossRefGoogle Scholar
  120. Hertel S, Knöfel H-D, Kramell R, Miersch O (1997) Partial purification and characterization of a jasmonic acid conjugate cleaving amidohydrolase from the fungus Botryodiplodia theobromae. FEBS Lett 407:105–110PubMedCrossRefGoogle Scholar
  121. Hofmann E, Zerbe P, Schaller F (2006) The crystal structure of Arabidopsis thaliana allene oxide cyclase: insights into the oxylipin cyclization reaction. Plant Cell 18:3201–3217PubMedCentralPubMedCrossRefGoogle Scholar
  122. Hornung E, Walther M, Kühn H, Feussner I (1999) Conversion of cucumber linoleate 13-lipoxygenase to a 9-lipoxygenating species by site-directed mutagenesis. Proc Natl Acad Sci USA 96:4192–4197PubMedCentralPubMedCrossRefGoogle Scholar
  123. Hou X, Lee LYC, Xia K, Yan Y, Yu H (2010) DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev Cell 19:884–894PubMedCrossRefGoogle Scholar
  124. Howe GA (2001) Cyclopentanone signals for plant defense: remodeling the jasmonic acid response. Proc Natl Acad Sci USA 98:12317–12319PubMedCentralPubMedCrossRefGoogle Scholar
  125. Howe GA (2004) Jasmonates as signals in the wound response. J Plant Growth Regul 23:223–237CrossRefGoogle Scholar
  126. Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66PubMedCrossRefGoogle Scholar
  127. Howe GA, Lee G, Itoh A, Li L, DeRocher A (2000) Cytochrome P450-dependent metabolism of oxylipins in tomato. Cloning and expression of allene oxide synthase and fatty acid hydroperoxide lyase. Plant Physiol 123:711–724PubMedCentralPubMedCrossRefGoogle Scholar
  128. Hsieh H-L, Okamoto H (2014) Molecular interaction of jasmonate and phytochrome A signalling. J Exp Bot 65:2847–2857PubMedCrossRefGoogle Scholar
  129. Hsieh H-L, Okamoto H, Wang M, Ang L-H, Matsui M, Goodman H, Deng XW (2000) FIN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development. Genes Dev 14:1958–1970PubMedCentralPubMedGoogle Scholar
  130. Hu P, Zhou W, Cheng Z, Fan M, Wang L, Xie D (2013) JAV1 controls jasmonate-regulated plant defense. Mol Cell 50:504–515PubMedCrossRefGoogle Scholar
  131. Huot B, Yao J, Montgomery B, He S (2014) Different shades of JAZ during plant growth and defense. Mol Plant 7:1267–1287PubMedCentralPubMedCrossRefGoogle Scholar
  132. Ibrahim A, Schütz A-L, Galano J-M, Herrfurth C, Feussner K, Durand T, Brodhun F, Feussner I (2011) The alphabet of galactolipids in Arabidopsis thaliana. Front Plant Sci 2:95PubMedCentralPubMedCrossRefGoogle Scholar
  133. Ishiguro S, Kwai-Oda A, Ueda J, Nishida I, Okada K (2001) The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation. Plant Cell 13:2191–2209PubMedCentralPubMedCrossRefGoogle Scholar
  134. Kamuro Y, Hirakawa S, Fujisawa H (2000) Comprising a jasmonic acid derivative, 3-oxo-2-pentyl-cyclopentaneacetic acid, c3-c4 alkyl ester and carrier. US patent US6093683 A:No of application: US6093683 AGoogle Scholar
  135. Katsir L, Chung HS, Koo AJ, Howe GA (2008a) Jasmonate signaling: a conserved mechanism of hormone sensing. Curr Opin Plant Biol 11:428–435PubMedCentralPubMedCrossRefGoogle Scholar
  136. Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA (2008b) COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc Natl Acad Sci USA 105:7100–7105PubMedCentralPubMedCrossRefGoogle Scholar
  137. Kazan K, Lyons R (2014) Intervention of Phytohormone Pathways by Pathogen Effectors. Plant Cell 26:2285–2309PubMedCentralPubMedCrossRefGoogle Scholar
  138. Kazan K, Manners JM (2008) Jasmonate signaling: toward an integrated view. Plant Physiol 146:1459–1468PubMedCentralPubMedCrossRefGoogle Scholar
  139. Kazan K, Manners JM (2011) The interplay between light and jasmonate signalling during defence and development. J Exp Bot 62:4087–4100PubMedCrossRefGoogle Scholar
  140. Kazan K, Manners JM (2012) JAZ repressors and the orchestration of phytohormone crosstalk. Trends Plant Sci 17:22–31PubMedCrossRefGoogle Scholar
  141. Kazan K, Manners JM (2013) MYC2: the Master in Action. Mol Plant 6:686–703PubMedCrossRefGoogle Scholar
  142. Kennedy GG (2003) TOMATO, PESTS, PARASITOIDS, AND PREDATORS: tritrophic Interactions Involving the Genus Lycopersicon. Ann Rev Entomol 48:51–72CrossRefGoogle Scholar
  143. Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451PubMedCrossRefGoogle Scholar
  144. Kessler A, Heil M (2011) The multiple faces of indirect defences and their agents of natural selection. Funct Ecol 25:348–357CrossRefGoogle Scholar
  145. Kessler A, Halitschke R, Baldwin IT (2004) Silencing the jasmonate cascade: induced plant defenses and insect populations. Science 305:665–668PubMedCrossRefGoogle Scholar
  146. Kessler D, Diezel C, Baldwin IT (2010) Changing pollinators as a means of escaping herbivores. Curr Biol 20:237–242PubMedCrossRefGoogle Scholar
  147. Kienow L, Schneider K, Bartsch M, Stuible H-P, Weng H, Miersch O, Wasternack C, Kombrink E (2008) Jasmonates meet fatty acids: functional analysis of a new acyl-coenzyme A synthetase family from Arabidopsis thaliana. J Exp Bot 59:403–419PubMedCrossRefGoogle Scholar
  148. Kitaoka N, Matsubara T, Sato M, Takahashi K, Wakuta S, Kawaide H, Matsui H, Nabeta K, Matsuura H (2011) Arabidopsis CYP94B3 encodes jasmonyl-l-isoleucine 12-hydroxylase, a key enzyme in the oxidative catabolism of jasmonate. Plant Cell Physiol 52:1757–1765PubMedCrossRefGoogle Scholar
  149. Knöfel H-D, Brückner C, Kramell R, Sembdner G, Schreiber K (1984) A radioimmunoassay for jasmonic acid. Biochem Physiol Pflanzen 179:317–325CrossRefGoogle Scholar
  150. Koda Y (1992) The role of jasmonic acid and related compounds in the regulation of plant development. Int Rev Cytol 135:155–199PubMedCrossRefGoogle Scholar
  151. Koo AJK, Howe GA (2009) The wound hormone jasmonate. Phytochemistry 70:1571–1580PubMedCentralPubMedCrossRefGoogle Scholar
  152. Koo AJ, Howe GA (2012) Catabolism and deactivation of the lipid-derived hormone jasmonoyl-isoleucine. Front Plant Sci 3:19PubMedCentralPubMedCrossRefGoogle Scholar
  153. Koo AJK, Chung HS, Kobayashi Y, Howe GA (2006) Identification of a peroxisomal acyl-activating enzyme involved in the biosynthesis of jasmonic acid in Arabidopsis. J Biol Chem 281:33511–33520PubMedCrossRefGoogle Scholar
  154. Koo AJK, Gao X, Jones AD, Howe GA (2009) A rapid wound signal activates the systemic synthesis of bioactive jasmonates in Arabidopsis. Plant J 59:974–986PubMedCrossRefGoogle Scholar
  155. Koo AJK, Cooke TF, Howe GA (2011) Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl-L-isoleucine. Proc Nat Acad Sci USA 108:9298–9303PubMedCentralPubMedCrossRefGoogle Scholar
  156. Kramell R, Miersch O, Hause B, Ortel B, Parthier B, Wasternack C (1997) Amino acid conjugates of jasmonic acid induce jasmonate-responsive gene expression in barley (Hordeum vulgare L.) leaves. FEBS Lett 414:197–202PubMedCrossRefGoogle Scholar
  157. Kramell R, Miersch O, Atzorn R, Parthier B, Wasternack C (2000) Octadecanoid-derived alteration of gene expression and the ‘oxylipin signature’ in stressed barley leaves. Implications for different signaling pathways. Plant Physiol 123:177–187PubMedCentralPubMedCrossRefGoogle Scholar
  158. Lackman P, González-Guzmán M, Tilleman S, Carqueijeiro I, Pérez AC, Moses T, Seo M, Kanno Y, Häkkinen ST, Van Montagu MCE, Thevelein JM, Maaheimo H, Oksman-Caldentey K-M, Rodriguez PL, Rischer H, Goossens A (2011) Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. Proc Natl Acad Sci USA 108:5891–5896PubMedCentralPubMedCrossRefGoogle Scholar
  159. Lau OS, Deng XW (2010) Plant hormone signaling lightens up: integrators of light and hormones. Curr Opin Plant Biol 13:571–577PubMedCrossRefGoogle Scholar
  160. Laudert D, Pfannschmidt U, Lottspeich F, Holländer-Czytko H, Weiler E (1996) Cloning, molecular and functional characterization of Arabidopsis thaliana allene oxide synthase (CYP 74), the first enzyme of the octadecanoid pathway to jasmonates. Plant Mol Biol 31:323–335PubMedCrossRefGoogle Scholar
  161. Laudert D, Schaller F, Weiler E (2000) Transgenic Nicotiana tabacum and Arabidopsis thaliana plants overexpressing allene oxide synthase. Planta 211:163–165PubMedCrossRefGoogle Scholar
  162. Lechner E, Xie D, Grava S, Pigaglio E, Planchais S, Murray J, Genschik P (2002) The AtRbx1 protein is part of plant SCF complexes, and its down-regulation causes severe growth and developmental defects. J Biol Chem 277:50069–50080PubMedCrossRefGoogle Scholar
  163. Lee D-S, Nioche P, Hamberg M, Raman CS (2008) Structural insights into the evolutionary paths of oxylipin biosynthetic enzymes. Nature 455:363–368PubMedCrossRefGoogle Scholar
  164. Lehmann J, Atzorn R, Brückner C, Reinbothe S, Leopold J, Wasternack C, Parthier B (1995) Accumulation of jasmonate, abscisic acid, specific transcripts and proteins in osmotically stressed barley leaf segments. Planta 197:156–162CrossRefGoogle Scholar
  165. Leon-Reyes A, Van der Does D, De Lange E, Delker C, Wasternack C, Van Wees S, Ritsema T, Pieterse C (2010) Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta 232:1423–1432PubMedCentralPubMedCrossRefGoogle Scholar
  166. Li L, Li C, Howe GA (2001) Genetic analysis of wound signaling in tomato. Evidence for a dual role of jasmonic acid in defence and female fertility. Plant Physiol 127:1414–1417PubMedCentralPubMedCrossRefGoogle Scholar
  167. Li C, Liu G, Xu C, Lee G, Bauer P, Ling H, Ganal M, Howe GA (2003) The tomato suppressor of prosystemin-mediated responses2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. Plant Cell 15:646–661Google Scholar
  168. Li L, McCaig B, Wingerd B, Wang J, Whaton M, Pichersky E, Howe GA (2004) The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell 16:126–143PubMedCentralPubMedCrossRefGoogle Scholar
  169. Li C, Schilmiller AL, Liu G, Lee GI, Jayanty S, Sageman C, Vrebalov J, Giovannoni JJ, Yagi K, Kobayashi Y, Howe GA (2005) Role of β-Oxidation in jasmonate biosynthesis and systemic wound signaling in tomato. Plant Cell 17:971–986PubMedCentralPubMedCrossRefGoogle Scholar
  170. Lorenzo O, Solano R (2005) Molecular players regulating the jasmonate signalling network. Curr Opin Plant Biol 8:532–540PubMedCrossRefGoogle Scholar
  171. Lorenzo O, Chico JM, Sanchez-Serrano JJ, Solano R (2004) JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16:1938–1950PubMedCentralPubMedCrossRefGoogle Scholar
  172. Lucas-Barbosa D, van Loon J, Dicke M (2011) The effects of herbivore-induced plant volatiles on interactions between plants and flower-visiting insects. Phytochemistry 72:1647–1654PubMedCrossRefGoogle Scholar
  173. Mandaokar A, Browse J (2009) MYB108 acts together with MYB24 to regulate jasmonate-mediated stamen maturation in Arabidopsis. Plant Physiol 149:851–862PubMedCentralPubMedCrossRefGoogle Scholar
  174. Mandaokar A, Thines B, Shin B, Markus Lange B, Choi G, Koo YJ, Yoo YJ, Choi YD, Choi G, Browse J (2006) Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. Plant J 46:984–1008PubMedCrossRefGoogle Scholar
  175. Matsui K (2006) Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr Opin Plant Biol 9:274–280PubMedCrossRefGoogle Scholar
  176. Maucher H, Hause B, Feussner I, Ziegler J, Wasternack C (2000) Allene oxide synthases of barley (Hordeum vulgare cv. Salome): tissue specific regulation in seedling development. Plant J 21:199–213PubMedCrossRefGoogle Scholar
  177. McConn M, Browse J (1996) The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell 8:403–416PubMedCentralPubMedCrossRefGoogle Scholar
  178. McConn M, Creelman R, Bell E, Mullet J, Browse J (1997) Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci USA 94:5473–5477PubMedCentralPubMedCrossRefGoogle Scholar
  179. Meesters C, Mönig T, Oeljeklaus J, Krahn D, Westfall C, Hause B, Jez J, Kaiser M, Kombrink E (2014) A chemical inhibitor of jasmonate signaling targets JAR1 in Arabidopsis thaliana. Nat Chem Biol 10:830–836PubMedCrossRefGoogle Scholar
  180. Meldau S, Erb M, Baldwin IT (2012) Defence on demand: mechanisms behind optimal defence patterns. Ann Bot 110:1503–1514PubMedCentralPubMedCrossRefGoogle Scholar
  181. Memelink J (2009) Regulation of gene expression by jasmonate hormones. Phytochemistry 70:1560–1570PubMedCrossRefGoogle Scholar
  182. Memelink J, Verpoorte R, Kijne J (2001) ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. Trends Plant Sci 6:212–219PubMedCrossRefGoogle Scholar
  183. Menke F, Champion A, Kijne J, Memelink J (1999) A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-d. EMBO-J 18:4455–4463PubMedCentralPubMedCrossRefGoogle Scholar
  184. Meyer A, Miersch O, Büttner C, Dathe W, Sembdner G (1984) Occurrence of the plant growth regulator jasmonic acid in plants. J Plant Growth Regul 3:1–8CrossRefGoogle Scholar
  185. Miao Y, Zentgraf U (2007) The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant Cell 19:819–830PubMedCentralPubMedCrossRefGoogle Scholar
  186. Mielke K, Forner S, Kramell R, Conrad U, Hause B (2011) Cell-specific visualization of jasmonates in wounded tomato and Arabidopsis leaves using jasmonate-specific antibodies. New Phytol 190:1069–1080PubMedCrossRefGoogle Scholar
  187. Miersch O, Wasternack C (2000) Octadecanoid and jasmonate signaling in tomato (Lycopersicon esculentum Mill.) leaves: endogenous jasmonates do not induce jasmonate biosynthesis. Biol Chem 381:715–722PubMedCrossRefGoogle Scholar
  188. Miersch O, Meyer A, Vorkefeld S, Sembdner G (1986) Occurrence of (+)-7-iso-jasmonic acid in Vicia faba L. and its biological activity. Plant Growth Regul 5:91–100CrossRefGoogle Scholar
  189. Miersch O, Preiss A, Sembdner G, Schreiber K (1987) (+)-7-iso-Jasmonic acid and related compounds from Botryodiplodia theobromae. Phytochemistry 26:1037–1039CrossRefGoogle Scholar
  190. Miersch O, Kramell R, Parthier B, Wasternack C (1999) Structure-activity relations of substituted, deleted or stereospecifically altered jasmonic acid in gene expression of barley leaves. Phytochemistry 50:353–361CrossRefGoogle Scholar
  191. Miersch O, Neumerkel J, Dippe M, Stenzel I, Wasternack C (2008) Hydroxylated jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a partial switch-off in jasmonate signaling. New Phytol 177:114–127PubMedGoogle Scholar
  192. Monte I, Hamberg M, Chini A, Gimenez-Ibanez S, Garcia-Casado G, Porzel A, Pazos F, Boter M, Solano R (2014) Rational design of a ligand-based antagonism of jasmonate perception. Nat Chem Biol 10:671–676PubMedCrossRefGoogle Scholar
  193. Mosblech A, Thurow C, Gatz C, Feussner I, Heilmann I (2011) Jasmonic acid perception by COI1 involves inositol polyphosphates in Arabidopsis thaliana. Plant J 65:949–957PubMedCrossRefGoogle Scholar
  194. Mousavi SAR, Chauvin A, Pascaud F, Kellenberger S, Farmer EE (2013) GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling. Nature 500:422–426PubMedCrossRefGoogle Scholar
  195. Mueller MJ, Brodschelm W (1994) Quantification of jasmonic acid by capillary gas chromatography-negative chemical ionization-mass spectrometry. Anal Biochem 218:425–435PubMedCrossRefGoogle Scholar
  196. Mueller MJ, Mene-Saffrane L, Grun C, Karg K, Farmer EE (2006) Oxylipin analysis methods. Plant J 45:472–489PubMedCrossRefGoogle Scholar
  197. Mueller S, Hilbert B, Dueckershoff K, Roitsch T, Krischke M, Mueller MJ, Berger S (2008) General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis. Plant Cell 20:768–785PubMedCentralPubMedCrossRefGoogle Scholar
  198. Müller A, Düchting P, Weiler E (2002) A multiplex GC-MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana. Planta 216:44–56PubMedCrossRefGoogle Scholar
  199. Müller-Uri F, Parthier B, Nover L (1988) Jasmonate-induced alteration of gene expression in barley leaf segments analyzed by in-vivo and in-vitro protein synthesis. Planta 76:241–247CrossRefGoogle Scholar
  200. Nakamura Y, Partz C, Brandt W, David A, Rendon-Anaya M, Herrera-Estrella A, Mithöfer A, Boland W (2014) Synthesis of 6-substituted 1-oxoindanoyl isoleucine conjugates and modeling studies with the COI1-JAZ coreceptor complex of lima bean. J Chem Ecol 40:687–699PubMedCrossRefGoogle Scholar
  201. Nakata M, Mitsuda N, Herde M, Koo AJK, Moreno JE, Suzuki K, Howe GA, Ohme-Takagi M (2013) A bHLH-type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, acts as a repressor to negatively regulate jasmonate signaling in Arabidopsis. Plant Cell 25:1641–1656PubMedCentralPubMedCrossRefGoogle Scholar
  202. Neumann P, Brodhun F, Sauer K, Herrfurth C, Hamberg M, Brinkmann J, Scholz J, Dickmanns A, Feussner I, Ficner R (2012) Crystal structures of Physcomitrella patens AOC1 and AOC2: insights into the enzyme mechanism and differences in substrate specificity. Plant Physiol 160:1251–1266PubMedCentralPubMedCrossRefGoogle Scholar
  203. O’Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser H, Bowles D (1996) Ethylene as a signal mediating the wound response of tomato plants. Science 274:1914–1917PubMedCrossRefGoogle Scholar
  204. O’Donnell PJ, Schmelz E, Block A, Miersch O, Wasternack C, Jones JB, Klee HJ (2003) Multiple hormones act sequentially to mediate a susceptible tomato pathogen defense response. Plant Physiol 133:1181–1189PubMedCentralPubMedCrossRefGoogle Scholar
  205. Onrubia M, Pollier J, Vanden Bossche R, Goethals M, Gevaert K, Moyano E, Vidal-Limon H, Cusido R, Palazon J, Goossens A (2014) Taximin, a conserved plant-specific peptide is involved in the modulation of plant-specialized metabolism. Plant Biotechnol J 12:971–983PubMedCrossRefGoogle Scholar
  206. Pan Z, Durst F, Werck-Reichhart D, Gardner HW, Camara B, Cornish K, Backhaus RA (1995) The major protein of guayule rubber particles is a cytochrome P450. J Biol Chem 270:8487–8494PubMedCrossRefGoogle Scholar
  207. Parchmann S, Gerlach H, Mueller MJ (1997) Induction of 12-oxo-phytodienoic acid in wounded plants and elicitated plant cell cultures. Plant Physiol 115:1057–1064PubMedCentralPubMedCrossRefGoogle Scholar
  208. Park J-H, Halitschke R, Kim H, Baldwin IT, Feldmann K, Feyereisen R (2002) A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J 31:1–12PubMedCrossRefGoogle Scholar
  209. Parthier B (1990) Jasmonates: hormonal regulators or stress factors in leaf senescence? J Plant Growth Regul 9:57–63CrossRefGoogle Scholar
  210. Pauwels L, Goossens A (2011) The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell 23:3089–3100PubMedCentralPubMedCrossRefGoogle Scholar
  211. Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W, Perez AC, Chico JM, Bossche RV, Sewell J, Gil E, Garcia-Casado G, Witters E, Inze D, Long JA, De Jaeger G, Solano R, Goossens A (2010) NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464:788–791PubMedCentralPubMedCrossRefGoogle Scholar
  212. Pearce G, Strydom D, Johnson S, Ryan CA (1991) A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253:895–897PubMedCrossRefGoogle Scholar
  213. Pena-Cortes H, Willmitzer L, Sanchez-Serrano J (1991) Abscisic acid mediates wound induction but not developmental-specific expression of the proteinase inhibitor II gene family. Plant Cell 3:963–972PubMedCentralPubMedCrossRefGoogle Scholar
  214. Pena-Cortes H, Albrecht T, Prat S, Weiler E, Willmitzer L (1993) Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta 191:123–128CrossRefGoogle Scholar
  215. Peng Z, Han C, Yuan L, Zhang K, Huang H, Ren C (2011) Brassinosteroid enhances jasmonate-induced anthocyanin accumulation in Arabidopsis seedlings. J Integr Plant Biol 53:632–640PubMedCrossRefGoogle Scholar
  216. Perez AC, Goossens A (2013) Jasmonate signalling: a copycat of auxin signalling? Plant Cell Environ 36:2071–2084PubMedCrossRefGoogle Scholar
  217. Pieterse CM, Pelt JV, Ton J, Parchmann S, Mueller M, Buchala A, Metreaux J-P, Loon LV (2000) Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiol Mol Plant Pathol 57:123–134CrossRefGoogle Scholar
  218. Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316PubMedCrossRefGoogle Scholar
  219. Pieterse CM, van der Does D, Zamioudis C, Leon-Reyes A, van Wees SCM (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521PubMedCrossRefGoogle Scholar
  220. Pieterse CM, Pierik R, Van Wees S (2014a) Different shades of JAZ during plant growth and defense. New Phytol 204:261–264PubMedCrossRefGoogle Scholar
  221. Pieterse CM, Zamioudis C, Berendsen R, Weller D, Van Wees S, Bakker P (2014b) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375PubMedCrossRefGoogle Scholar
  222. Pott M, Hippauf F, Saschenbreker S, Chen F, Ross JJ, Kiefer I, Slusarenko A, Noel J, Pichersky E, Effmert U, Piechulla B (2004) Biochemical and structural characterization of benzenoid carboxyl methyltransferases involved in floral scent production in Stephanotis floribunda and Nicotiana suaveolens. Plant Physiol 135:1946–1955PubMedCentralPubMedCrossRefGoogle Scholar
  223. Qi T, Song S, Ren Q, Wu D, Huang H, Chen Y, Fan M, Peng W, Ren C, Xie D (2011) The jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 23:1795–1814PubMedCentralPubMedCrossRefGoogle Scholar
  224. Ralhan A, Schöttle S, Thurow C, Iven T, Feussner I, Polle A, Gatz C (2012) The vascular pathogen Verticillium longisporum requires a jasmonic acid-independent COI1 function in roots to elicit disease symptoms in Arabidopsis shoots. Plant Physiol 159:1192–1203PubMedCentralPubMedCrossRefGoogle Scholar
  225. Reeves PH, Ellis CM, Ploense SE, Wu M-F, Yadav V, Tholl D, Chételat A, Haupt I, Kennerley BJ, Hodgens C, Farmer EE, Nagpal P, Reed JW (2012) A regulatory network for coordinated flower maturation. PLoS Genet 8:e1002506PubMedCentralPubMedCrossRefGoogle Scholar
  226. Reinbothe S, Mollenhauer B, Reinbothe C (1994a) JIPs and RIPs: the regulation of plant gene expression by jasmonates in response to environmental cues and pathogens. Plant Cell 6:1197–1209PubMedCentralPubMedCrossRefGoogle Scholar
  227. Reinbothe S, Reinbothe C, Lehmann J, Becker W, Apel K, Parthier B (1994b) JIP60, a methyl jasmonate-induced ribosome-inactivating protein involved in plant stress reactions. Proc Natl Acad Sci USA 91:7012–7016PubMedCentralPubMedCrossRefGoogle Scholar
  228. Reinbothe C, Springer A, Samol I, Reinbothe S (2009) Plant oxylipins: role of jasmonic acid during programmed cell death, defence and leaf senescence. FEBS J 276:4666–4681PubMedCrossRefGoogle Scholar
  229. Richmond T, Bleecker A (1999) A defect in b-oxidation causes abnormal inflorescence development in Arabidopsis. Plant Cell 11:1911–1923PubMedCentralPubMedGoogle Scholar
  230. Rickert K, Bostock R (1992) Evidence for release of the elicitor arachidonic acid and its metabolites from sporangia of Phytophthora infestans during infection of potato. Phys Mol Plant Path 41:61–72CrossRefGoogle Scholar
  231. Robert-Seilaniantz A, Grant M, Jones JDG (2011) Hormone crosstalk in plant disease and defense: more than just JASMONATE-SALICYLATE antagonism. Annu Rev Phytopathol 49:317–343PubMedCrossRefGoogle Scholar
  232. Robson F, Okamoto H, Patrick E, Harris S-R, Wasternack C, Brearley C, Turner JG (2010) Jasmonate and phytochrome A signaling in Arabidopsis wound and shade responses are integrated through JAZ1 stability. Plant Cell 22:1143–1160PubMedCentralPubMedCrossRefGoogle Scholar
  233. Rohwer C, Erwin J (2008) Horticultural applications of jasmonates: a review. J Hort Scie Biotech 83:283–304Google Scholar
  234. Rustgi S, Pollmann S, Buhr F, Springer A, Reinbothe C, von Wettstein D, Reinbothe S (2014) JIP60-mediated, jasmonate- and senescence-induced molecular switch in translation toward stress and defense protein synthesis. Proc Natl Acad Sci USA 111:14181–14186PubMedCentralPubMedCrossRefGoogle Scholar
  235. Ryan CA (2000) The systemin signaling pathway: differential activation of plant defensive genes. Biochem Biophys Acta 1477:112–121PubMedGoogle Scholar
  236. Sakuaba Y, Park S-Y, Kim Y-S, Wang S-H, Yoo S-C, Hörtensteiner S, Paek N-C (2014) Arabidopsis STAY-GREEN2 Is a negative regulator of chlorophyll degradation during leaf senescence. Mol Plant 7:1288–1302CrossRefGoogle Scholar
  237. Salvador-Recatala V, Tjallingii W, Farmer EE (2014) Real-time, in vivo intracellular recordings of caterpillar-induced depolarization waves in sieve elements using aphid electrodes. New Phytol 203:674–684PubMedCrossRefGoogle Scholar
  238. Salvador-Recatalia V, Tjallingii W, Farmer EE (2014) Real-time, in vivo intracellular recordings of caterpillar-induced depolarization waves in sieve elements using aphid electrodes. New Phytol 203:674–684CrossRefGoogle Scholar
  239. Sanders P, Lee P, Biesgen C, Boone J, Beals T, Weiler E, Goldberg R (2000) The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12:1041–1061PubMedCentralPubMedCrossRefGoogle Scholar
  240. Sasaki-Sekimoto Y, Jikumaru Y, Obayashi T, Saito H, Masuda S, Kamiya Y, Ohta H, Shirasu K (2013) Basic helix-loop-helix transcription factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 are negative regulators of jasmonate responses in Arabidopsis. Plant Physiol 163:291–304PubMedCentralPubMedCrossRefGoogle Scholar
  241. Savchenko T, Walley JW, Chehab EW, Xiao Y, Kaspi R, Pye MF, Mohamed ME, Lazarus CM, Bostock RM, Dehesh K (2010) Arachidonic acid: an evolutionarily conserved signaling molecule modulates plant stress signaling networks. Plant Cell 22:3193–3205PubMedCentralPubMedCrossRefGoogle Scholar
  242. Savchenko T, Zastrijnaja O, Klimov V (2014) Oxylipins and plant abiotic stress resistance. Biochem (Moscow) 79:362–375CrossRefGoogle Scholar
  243. Scala A, Mirabella R, Mugo C, Matsui K, Haring MA, Schuurink RC (2013) E-2-hexenal promotes susceptibility to Pseudomonas syringae by activating jasmonic acid pathways in Arabidopsis. Front Plant Sci 4:74PubMedCentralPubMedCrossRefGoogle Scholar
  244. Scalschi L, Sanmartin M, Camanes G, Troncho P, Sanchez-Serrano J (2015) Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during activation of defense responses against Botrytis cinerea. Plant J 81:304–315PubMedCrossRefGoogle Scholar
  245. Schaller A, Stintzi A (2009) Enzymes in jasmonate biosynthesis - Structure, function, regulation. Phytochemistry 70:1532–1538PubMedCrossRefGoogle Scholar
  246. Schaller F, Weiler E (1997) Molecular cloning and characterization of 12-oxophytodienoate reductase, an enzyme of the octadecanoid signaling pathway from Arabidopsis thalina: STRUCTURAL AND FUNCTIONAL RELATIONSHIP TO YEAST OLD YELLOW ENZYME. J Biol Chem 272:28066–28072PubMedCrossRefGoogle Scholar
  247. Schaller F, Hennig P, Weiler E (1998) 12-oxophytodienoate-10,11-reductase: occurrence of two isoenzymes of different specificity against stereoisomers of 12-oxophytodienoic acid. Plant Physiol 118:1345–1351PubMedCentralPubMedCrossRefGoogle Scholar
  248. Schaller F, Zerbe P, Reinbothe S, Reinbothe C, Hofmann E, Pollmann S (2008) The allene oxide cyclase family of Arabidopsis thaliana - localization and cyclization. FEBS J 275:2428–2441PubMedCrossRefGoogle Scholar
  249. Schmidt J, Kramell R, Brückner C, Schneider G, Sembdner G, Schreiber K, Stach J, Jensen E (1990) Gas chromatographic/mass spectrometric and tandem mass spectrometric investigations of synthetic amino acid conjugates of jasmonic acid and endogenously occurring related compounds from Vicia faba L. Biomed Environm Mass Spectrom 19:327–338CrossRefGoogle Scholar
  250. Schneider K, Kienow L, Schmelzer E, Colby T, Bartsch M, Miersch O, Wasternack C, Kombrink E, Stuible H-P (2005) A new type of peroxisomal acyl-coenzyme A synthetase from Arabidopsis thaliana has the catalytic capacity to activate biosynthetic precursors of jasmonic acid. J Biol Chem 280:13962–13972PubMedCrossRefGoogle Scholar
  251. Sembdner G, Atzorn R, Schneider G (1994) Plant hormone conjugation. Plant Mol Biol 26:1459–1481PubMedCrossRefGoogle Scholar
  252. Seo S, Okamoto M, Seto H, Ishizuka K, Sano H, Ohashi Y (1995) Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science 270:1988–1992PubMedCrossRefGoogle Scholar
  253. Seo H, Song J, Cheong J-J, Lee H-H, Hwang I, Lee J, Choi Y (2001) Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proc Natl Acad Sci USA 98:4788–4793PubMedCentralPubMedCrossRefGoogle Scholar
  254. Shah J, Zeier J (2013) Long-distance communication and signal amplification in systemic acquired resistance. Front Plant Sci 4:252CrossRefGoogle Scholar
  255. Shan X, Wang J, Chua L, Jiang D, Peng W, Xie D (2011) The role of Arabidopsis rubisco activase in jasmonate-induced leaf senescence. Plant Physiol 155:751–764PubMedCentralPubMedCrossRefGoogle Scholar
  256. Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu F-F, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–405PubMedCentralPubMedCrossRefGoogle Scholar
  257. Shen J, Tieman D, Jones A, Taylor M, Schmelz E, Huffaker A, Bies D, Chen K, Klee H (2014) A13-lipoxygenase, TomloxC, is essential for synthesis of C5 flavour volatiles in tomato. J Exp Bot 65:419–428PubMedCentralPubMedCrossRefGoogle Scholar
  258. Shiojiri K, Kishimoto K, Ozawa R, Kugimiya S, Urashimo S, Arimura G, Horiuchi J, Nishioka T, Matsui K, Takabayashi J (2006) Changing green leaf volatile biosynthesis in plants: an approach for improving plant resistance against both herbivores and pathogens. Proc Natl Acad Sci USA 103:16672–16676PubMedCentralPubMedCrossRefGoogle Scholar
  259. Siedow J (1991) Plant lipoxygenase: structure and function. Annu Rev Plant Physiol. Plant Mol Biol 42:145–188Google Scholar
  260. Song WC, Brash AR (1991) Purification of an allene oxide-synthase and identification of the enzyme as a cytochrome P-450. Science 253:781–784PubMedCrossRefGoogle Scholar
  261. Song W-C, Funk C, Brash AR (1993) Molecular cloning of an allene oxide synthase: a cytochrome P450 specialized for the metabolism of fatty acid hydroperoxides. Proc Natl Acad Sci USA 90:8519–8523PubMedCentralPubMedCrossRefGoogle Scholar
  262. Song S, Qi T, Huang H, Ren Q, Wu D, Chang C, Peng W, Liu Y, Peng J, Xie D (2011) The jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate-regulated stamen development in Arabidopsis. Plant Cell 23:1000–1013PubMedCentralPubMedCrossRefGoogle Scholar
  263. Song S, Qi T, Fan M, Zhang X, Gao H, Huang H, Wu D, Guo H, Xie D (2013a) The bHLH subgroup IIId factors negatively regulate jasmonate-mediated plant defense and development. PLoS Genet 9:e1003653PubMedCentralPubMedCrossRefGoogle Scholar
  264. Song S, Qi T, Huang H, Xie D (2013b) Regulation of stamen development by coordinated actions of jasmonate, auxin, and gibberellin in Arabidopsis. Mol Plant 6:1065–1073PubMedCrossRefGoogle Scholar
  265. Song S, Huang H, Gao H, Wang J, Wu D, Liu X, Yang S, Zhai Q, Li C, Qi T, Xie D (2014a) Interaction between MYC2 and ETHYLENE INSENSITIVE3 Modulates Antagonism between Jasmonate and Ethylene Signaling in Arabidopsis. Plant Cell Rep 26:263–279CrossRefGoogle Scholar
  266. Song S, Qi T, Wasternack C, Xie D (2014b) Jasmonate Signaling. Curr Opin Plant Biol 21:112–119PubMedCrossRefGoogle Scholar
  267. Staswick PE (1990) Novel Regulation of Vegetative Storage Protein Genes. Plant Cell 2:1–6PubMedCentralPubMedCrossRefGoogle Scholar
  268. Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–2127PubMedCentralPubMedCrossRefGoogle Scholar
  269. Staswick PE, Su W, Howell S (1992) Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci USA 89:6837–6840PubMedCentralPubMedCrossRefGoogle Scholar
  270. Staswick PE, Tiryaki I, Rowe M (2002) Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14:1405–1415PubMedCentralPubMedCrossRefGoogle Scholar
  271. Stelmach B, Müller A, Hennig P, Gebhardt S, Schubert-Zsilavecz M, Weiler E (2001) A novel class of oxylipins, sn1-O-(12-Oxophytodienoyl)-sn2-O-(hexadecatrienoyl)-monogalactosyl diglyceride, from Arabidopsis thaliana. J Biol Chem 276:12832–12838PubMedCrossRefGoogle Scholar
  272. Stenzel I, Hause B, Maucher H, Pitzschke A, Miersch O, Ziegler J, Ryan C, Wasternack C (2003a) Allene oxide cyclase dependence of the wound response and vascular bundle-specific generation of jasmonates in tomato - amplification in wound signaling. Plant J 33:577–589PubMedCrossRefGoogle Scholar
  273. Stenzel I, Hause B, Miersch O, Kurz T, Maucher H, Weichert H, Ziegler J, Feussner I, Wasternack C (2003b) Jasmonate biosynthesis and the allene oxide cyclase family of Arabidopsis thaliana. Plant Mol Biol 51:895–911PubMedCrossRefGoogle Scholar
  274. Stenzel I, Otto M, Delker C, Kirmse N, Schmidt D, Miersch O, Hause B, Wasternack C (2012) ALLENE OXIDE CYCLASE (AOC) gene family members of Arabidopsis thaliana: tissue- and organ-specific promoter activities and in vivo heteromerization. J Exp Bot 63:6125–6138PubMedCentralPubMedCrossRefGoogle Scholar
  275. Sticher L, Mauch-Mani B, Metraux J (1997) Systemic aquired resistance. Annu Rev Phytopathol 35:235–270PubMedCrossRefGoogle Scholar
  276. Stintzi A, Browse J (2000) The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci USA 97:10625–10630PubMedCentralPubMedCrossRefGoogle Scholar
  277. Stratmann JW, Gusmaroli G (2012) Many jobs for one good cop – The COP9 signalosome guards development and defense. Plant Sci 185–186:50–64PubMedCrossRefGoogle Scholar
  278. Stumpe M, Göbel C, Faltin B, Beike AK, Hause B, Himmelsbach K, Bode J, Kramell R, Wasternack C, Frank W, Reski R, Feussner I (2010) The moss Physcomitrella patens contains cyclopentenones but no jasmonates: mutations in allene oxide cyclase lead to reduced fertility and altered sporophyte morphology. New Phytol 188:740–749PubMedCrossRefGoogle Scholar
  279. Sugimoto K, Matsui K, Iijima Y, Akakabe Y, Muramoto S, Ozawa R, Uefune M, Sasaki R, Alamgir K, Akitake S, Nobuke T, Galis I, Aoki K, Shibata D, Takabayashi J (2014) Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense. Proc Natl Acad Sci USA 111:7144–7149PubMedCentralPubMedCrossRefGoogle Scholar
  280. Sun J, Xu Y, Ye S, Jiang H, Chen Q, Liu F, Zhou W, Chen R, Li X, Tietz O, Wu X, Cohen JD, Palme K, Li C (2009) Arabidopsis ASA1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation. Plant Cell 21:1495–1511PubMedCentralPubMedCrossRefGoogle Scholar
  281. Sun L, Zhu L, Xu L, Yan D, Min L, Zhang X (2014) Cotton cytochrome P450 CYP82D regulates systemic cell death by modulating the octadecanoid pathway. Nature Comm 5:5372. doi: 10.1038/ncomms6372 CrossRefGoogle Scholar
  282. Suza W, Rowe M, Hamberg M, Staswick PE (2010) A tomato enzyme synthesizes (+)-7-iso-jasmonoyl-l-isoleucine in wounded leaves. Planta 231:717–728PubMedCrossRefGoogle Scholar
  283. Svyatyna K, Riemann M (2012) Light-dependent regulation of the jasmonate pathway. Protoplasma 249:137–145CrossRefGoogle Scholar
  284. Tabata R, Ikezaki M, Fujibe T, Aida M, C-e Tian, Ueno Y, Yamamoto KT, Machida Y, Nakamura K, Ishiguro S (2010) Arabidopsis AUXIN RESPONSE FACTOR6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes. Plant Cell Physiol 51:164–175PubMedCrossRefGoogle Scholar
  285. Taki N, Sasaki-Sekimoto Y, Obayashi T, Kikuta A, Kobayashi K, Ainai T, Yagi K, Sakurai N, Suzuki H, Masuda T, K-i Takamiya, Shibata D, Kobayashi Y, Ohta H (2005) 12-oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. Plant Physiol 139:1268–1283PubMedCentralPubMedCrossRefGoogle Scholar
  286. Tan X, Calderon-Villalobus L, Sharon M, Zheng C, Robinson C, Estelle M, Zheng N (2007) Mechnism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–645PubMedCrossRefGoogle Scholar
  287. Tarkowska D, Novak O, Flokova K, Tarkowska P, Tureckova V, Gruz J, Rolcik J, Strnad M (2014) Quo vadis plant hormone analysis? Planta 240:55–76PubMedCrossRefGoogle Scholar
  288. Thaler JS, Humphrey PT, Whiteman NK (2012) Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci 17:260–270PubMedCrossRefGoogle Scholar
  289. Theodoulou FL, Job K, Slocombe SP, Footitt S, Holdsworth M, Baker A, Larson TR, Graham IA (2005) Jasmonic acid levels are reduced in COMATOSE ATP-binding cassette transporter mutants. Implications for transport of jasmonate precursors into peroxisomes. Plant Physiol 137:835–840PubMedCentralPubMedCrossRefGoogle Scholar
  290. Theorell H, Holman V, Akeson A (1947) Crystalline lipoxidase. Acta Chem Scand 1:571–576PubMedCrossRefGoogle Scholar
  291. Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448:661–665PubMedCrossRefGoogle Scholar
  292. Thiocone A, Farmer E, Wolfender J (2008) Screening for wound-induced oxylipins in Arabidopsis thalina by differential HPLC-APC1/MS profiling of crude leaf extracts and subsequent characterization by capillary-scale NMR. Phytochem Anal 19:198–205PubMedCrossRefGoogle Scholar
  293. Tian D, Tooker J, Peiffer M, Chung S, Felton G (2012) Role of trichomes in defense against herbivores: comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum). Planta 236:1053–1066PubMedCrossRefGoogle Scholar
  294. Tissier A (2012) Glandular trichomes: what comes after expressed sequence tags? Plant J 70:51–68PubMedCrossRefGoogle Scholar
  295. Tran L-S, Pal S (2014) Phytohormones: a window to metabolism, signaling and biotechnological applications. Springer, BerlinGoogle Scholar
  296. Tsuchiya T, Ohta H, Okawa K, Owamatsu A, Shimada H, Masuda T, Takamiya K-I (1999) Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate. Proc Nat Acad Sci USA 96:15262–15367CrossRefGoogle Scholar
  297. Ueda J, Kato J (1980) Isolation and identification of a senescence-promoting substance from wormwood (Artemisia absinthium L.). Plant Physiol 66:246–249PubMedCentralPubMedCrossRefGoogle Scholar
  298. Ueda J, Miyamoto K, Aoki M, Hirata T, Sato T, Momotani Y (1991) Identification of jasmonic acid in Chlorella and Spirulina. Bull. Univ. Osaka Pref Ser 23:103–108Google Scholar
  299. Van der Does D, Leon-Reyes A, Koornneef A, Van Verk MC, Rodenburg N, Pauwels L, Goossens A, Körbes AP, Memelink J, Ritsema T, Van Wees SCM, Pieterse CMJ (2013) Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59. Plant Cell 25:744–761PubMedCentralPubMedCrossRefGoogle Scholar
  300. Van der Ent S, Van Wees SCM, Pieterse CMJ (2009) Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70:1581–1588PubMedCrossRefGoogle Scholar
  301. van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297PubMedCrossRefGoogle Scholar
  302. Verhage A, Vlaardingerbroek I, Raaijmakers C, Van Dam N, Dicke M, Van Wees SCM, Pieterse CM (2011) Rewiring of the jasmonate signaling pathway in Arabidopsis during insect herbivory. Front Plant Sci 2:47PubMedCentralPubMedCrossRefGoogle Scholar
  303. Vick BA, Zimmerman DC (1983) The biosynthesis of jasmonic acid: a physiological role for plant lipoxygenase. Biochem Biophys Res Comm 111:470–477PubMedCrossRefGoogle Scholar
  304. Vick BA, Zimmerman DC (1984) Biosynthesis of jasmonic acid by several plant species. Plant Physiol 75:458–461PubMedCentralPubMedCrossRefGoogle Scholar
  305. Vick BA, Zimmerman DC (1986) Characterization of 12-oxo-phytodienoic Acid reductase in corn: the jasmonic Acid Pathway. Plant Physiol 80:202–205PubMedCentralPubMedCrossRefGoogle Scholar
  306. Vörös K, Feussner I, Kühn H, Lee J, Graner A, Löbler M, Parthier B, Wasternack C (1998) Characterization of a methyljasmonate-inducible lipoxygenase from barley (Hordeum vulgare cv. Salome) leaves. Eur J Biochem 251:36–44PubMedCrossRefGoogle Scholar
  307. Walling L (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216PubMedGoogle Scholar
  308. Wang C, Avdiushko S, Hildebrand D (1999) Overexpression of a cytoplasm-localized allene oxide synthase promotes the wound-induced accumulation of jasmonic acid in transgenic tobacco. Plant Mol Biol 40:783–793PubMedCrossRefGoogle Scholar
  309. Wang J-G, Chen C-H, Chien C-T, Hsieh H-L (2011) FAR-RED INSENSITIVE219 Modulates CONSTITUTIVE PHOTOMORPHOGENIC1 Activity via Physical Interaction to Regulate Hypocotyl Elongation in Arabidopsis. Plant Physiol 156:631–646PubMedCentralPubMedCrossRefGoogle Scholar
  310. Wasternack C (2006) Oxylipins: biosynthesis, signal transduction and action. In: Hedden P, Thomas S (eds) Plant Hormone Signaling. Blackwell Publishing, Harpenden, pp 185–228Google Scholar
  311. Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697PubMedCentralPubMedCrossRefGoogle Scholar
  312. Wasternack C (2014a) Action of jasmonates in plant stress responses and development - applied aspects. Biotechnol Adv 32:31–39PubMedCrossRefGoogle Scholar
  313. Wasternack C (2014b) Perception, signaling and cross-talk of jasmonates and the seminal contributions of the Daoxin Xie´s lab and the Chuanyou Li’s lab. Plant Cell Rep 33:707–718PubMedCrossRefGoogle Scholar
  314. Wasternack C, Hause B (2002) Jasmonates and octadecanoids - signals in plant stress response and development. In: Moldave K (ed) Progr Nucl Acid Res Mol Biol, vol 72. Acad Press, New York, pp 165–221Google Scholar
  315. Wasternack C, Hause B (2013a) Benno Parthier und die Jasmonatforschung in Halle. Nova Acta Leopold NF Suppl 28:29–38Google Scholar
  316. Wasternack C, Hause B (2013b) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111:1021–1058PubMedCentralPubMedCrossRefGoogle Scholar
  317. Wasternack C, Kombrink E (2010) Jasmonates: structural requirements for lipid-derived signals active in plant stress responses and development. ACS Chem Biol 5:63–77PubMedCrossRefGoogle Scholar
  318. Wasternack C, Parthier B (1997) Jasmonate-signalled plant gene expression. Trends Plant Sci 2:302–307CrossRefGoogle Scholar
  319. Wasternack C, Forner S, Strnad M, Hause B (2013) Jasmonates in flower and seed development. Biochimie 95:79–85PubMedCrossRefGoogle Scholar
  320. Weber H, Vick B, Farmer E (1997) Dinor-oxo-phytodienoic acid: a new hexadecanoid signal in the jasmonate family. Proc Natl Acad Sci USA 94:10473–10478PubMedCentralPubMedCrossRefGoogle Scholar
  321. Weidhase R, Kramell H-M, Lehmann J, Liebisch H-W, Lerbs W, Parthier B (1987) Methyljasmonate-induced changes in the polypeptide pattern of senescing barley leaf segments. Plant Sci 51:177–186CrossRefGoogle Scholar
  322. Weiler EW, Kutchan TM, Gorba T, Brodschelm W, Niesel U, Bublitz F (1994) The Pseudomonas phytotoxin coronatine mimics octadecanoid signalling molecules of higher plants. FEBS Lett 345:9–13PubMedCrossRefGoogle Scholar
  323. Widemann E, Miesch L, Lugan R, Holder E, Heinrich C, Aubert Y, Miesch M, Pinot F, Heitz T (2013) The amido-hydrolases IAR3 and ILL6 contribute to jasmonoyl-isoleucine hormone turnover and generate 12-hydroxy-jasmonic acid upon wounding in Arabidopsis leaves. J Biol Chem 288:31701–31714PubMedCentralPubMedCrossRefGoogle Scholar
  324. Wildon D, Thain J, Minchin P, Gubb I, Reilly A, Skipper Y, Doherty H, O´Donnell P, Bowles D (1992) Electrical signaling and systemic proteinase inhibitor induction in the wounded plant. Nature 360:62–65CrossRefGoogle Scholar
  325. Woldemariam M, Ongokesung N, Baldwin IT, Galis I (2012) Jasmonoyl-L-isoleucine hydrolase 1 (JIH1) regulates jasmonoyl-L-isoleucine levels and attenuates plant defenses against herbivores. Plant J 72:758–767PubMedCrossRefGoogle Scholar
  326. Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735PubMedCentralPubMedCrossRefGoogle Scholar
  327. Xiao S, Dai L, Liu F, Wang Z, Peng W, Xie D (2004) COS1: an Arabidopsis coronatine insensitive1 suppressor essential for regulation of jasmonate-mediated plant defense and senescence. Plant Cell 16:1132–1142PubMedCentralPubMedCrossRefGoogle Scholar
  328. Xie D-X, Feys B, James S, Nieto-Rostro M, Turner J (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094PubMedCrossRefGoogle Scholar
  329. Xiong H, Shen H, Zhang L, Zhang Y, Guo X, Wang P, Duan P, Ji C, Zhong L, Zhang F, Zuo Y (2013) Comparative proteomic analysis for assessment of the ecological significance of maize and peanut intercropping. J Proteom 78:447–460CrossRefGoogle Scholar
  330. Xu L, Liu F, Lechner E, Genschik P, Crosby W, Ma H, Peng W, Huang D, Xie D (2002) The SCF-coi1 ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14:1919–1935PubMedCentralPubMedCrossRefGoogle Scholar
  331. Xu P, Choo Y-M, Rosa A, Leal W (2014) Mosquito odorant receptor for DEET and methyl jasmonate. Proc Natl Acad Sci USA 111:16592–16597PubMedCentralPubMedCrossRefGoogle Scholar
  332. Yamane H, Sugawara J, Suzuki Y, Shimamura E, Takahashi N (1980) Syntheses of jasmonic acid related compounds and their structure-activity relationship on the growth of rice seedlings. Agric Biol Chem 44:2857–2864CrossRefGoogle Scholar
  333. Yamane H, Takahashi N, Ueda J, Kato J (1981) Resolution of (+/−)-methyl jasmonate by high performance liquid chromatography and the inhibitory effect of (+)-enantiomer on the growth of rice seedlings. Agric Biol Chem 45:1709–1711CrossRefGoogle Scholar
  334. Yan Y, Stolz S, Chetelat A, Reymond P, Pagni M, Dubugnon L, Farmer EE (2007) A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19:2470–2483PubMedCentralPubMedCrossRefGoogle Scholar
  335. Yan J, Zhang C, Gu M, Bai Z, Zhang W, Qi T, Cheng Z, Peng W, Luo H, Nan F, Wang Z, Xie D (2009) The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 21:2220–2236PubMedCentralPubMedCrossRefGoogle Scholar
  336. Yan J, Li H, Li S, Yao R, Deng H, Xie Q, Xie D (2013a) The Arabidopsis F-box protein CORONATINE INSENSITIVE1 is stabilized by SCFCOI1 and degraded via the 26S proteasome pathway. Plant Cell 25:486–498PubMedCentralPubMedCrossRefGoogle Scholar
  337. Yan L, Zhai Q, Wei J, Li S, Wang B, Huang T, Du M, Sun J, Kang L, Li C, Li C (2013b) Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity. PLoS Genet 9:e1003964PubMedCentralPubMedCrossRefGoogle Scholar
  338. Yang D-L, Yao J, Mei C-S, Tong X-H, Zeng L-J, Li Q, Xiao L-T, T-p Sun, Li J, Deng X-W, Lee CM, Thomashow MF, Yang Y, He Z, He SY (2012) Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc Nat Acad Sci USA 109:E1192–E1200PubMedCentralPubMedCrossRefGoogle Scholar
  339. Yoshida Y, Sano R, Wada T, Takabayashi J, Okada K (2009) Jasmonic acid control of GLABRA3 links inducible defense and trichome patterning in Arabidopsis. Development 136:1039–1048PubMedCrossRefGoogle Scholar
  340. Yu H, Shiva S, Roth M, Tamura P, Zheng L, Li M, Sarowar S, Honey S, McEllhiney D, Hinkes P, Seib L, Williams T, Gadbury G, Wang X, Shah J, Welti R (2014) Lipid changes after leaf wounding in Arabidopsis thaliana: expanded lipidomic data form the basis for lipid co-occurrence analysis. Plant J 80:728–743CrossRefGoogle Scholar
  341. Zhai Q, Yan L, Tan D, Chen R, Sun J, Gao L, Dong M-Q, Wang Y, Li C (2013) Phosphorylation-coupled proteolysis of the transcription factor MYC2 is important for jasmonate-signaled plant immunity. PLoS Genet 9:e1003422PubMedCentralPubMedCrossRefGoogle Scholar
  342. Zhang H, Zhou C (2013) Signal transduction in leaf senescence. Plant Mol Biol 82:539–545PubMedCrossRefGoogle Scholar
  343. Zhou C, Zhang L, Duan J, Miki B, Wu K (2005) HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell 17:1196–1204PubMedCentralPubMedCrossRefGoogle Scholar
  344. Zhu X, Zhu J-K (2013) Double repression in jasmonate-mediated plant defense. Mol Cell 50:459–460PubMedCentralPubMedCrossRefGoogle Scholar
  345. Ziegler J, Hamberg M, Miersch O, Parthier B (1997) Purification and characterization of allene oxide cyclase from dry corn seeds. Plant Physiol 114:565–573PubMedCentralPubMedGoogle Scholar
  346. Ziegler J, Wasternack C, Hamberg M (1999) On the specificity of allene oxide cyclase. Lipids 34:1005–1015PubMedCrossRefGoogle Scholar
  347. Ziegler J, Stenzel I, Hause B, Maucher H, Hamberg M, Grimm R, Ganal M, Wasternack C (2000) Molecular cloning of allene oxide cyclase: the enzyme establishing the stereochemistry of octadecanoids and jasmonates. J Biol Chem 275:19132–19138PubMedCrossRefGoogle Scholar
  348. Zimmerman DC, Feng P (1978) Characterization of a prostaglandin-like metabolite of linolenic acie produced by a flax seed extract. Lipids 13:313–316CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Molecular Signal ProcessingLeibniz Institute of Plant BiochemistryHalle (Saale)Germany
  2. 2.Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CRPalacký UniversityOlomoucCzech Republic

Personalised recommendations