Journal of Plant Growth Regulation

, Volume 33, Issue 1, pp 4–20 | Cite as

Mechanism and Significance of Chlorophyll Breakdown

  • Bastien Christ
  • Stefan HörtensteinerEmail author


Chlorophyll breakdown is the most obvious sign of leaf senescence and fruit ripening. A multistep pathway has been elucidated in recent years that can be divided into two major parts. In the first phase, which commonly is active in higher plants, chlorophyll is converted via several photoreactive intermediates to a primary colorless breakdown product within the chloroplast. The second part of chlorophyll breakdown takes place in the cytosol and the vacuole. During this phase, the primary colorless intermediate is modified in largely species-specific reactions to a number of similar, yet structurally different, linear tetrapyrrolic products that finally are stored within the vacuole of senescing cells. To date, most of the biochemical reactions of the first phase of chlorophyll breakdown have been elucidated and genes have been identified. By contrast, mechanisms of catabolite transport and modification during the second phase are largely unknown. This review summarizes the current knowledge on the biochemical reactions involved in chlorophyll breakdown, with a special focus on the second-phase reactions and the fate of by-products that are released from chlorophyll during its breakdown.


Chlorophyll breakdown Chlorophyll catabolites Detoxification Nutrient remobilization Senescence 



This work on chlorophyll breakdown was financially supported by grants from the Swiss National Science Foundation, the National Center of Competence in Research Plant Survival, a research program of the Swiss National Science Foundation, and CropLife, a European FP7 Marie-Curie Initial Training Network project.


  1. Armstead I, Donnison I, Aubry S et al (2007) Cross-species identification of Mendel’s I locus. Science 315:73PubMedCrossRefGoogle Scholar
  2. Aubry S, Mani J, Hörtensteiner S (2008) Stay-green protein, defective in Mendel’s green cotyledon mutant, acts independent and upstream of pheophorbide a oxygenase in the chlorophyll catabolic pathway. Plant Mol Biol 67:243–256PubMedCrossRefGoogle Scholar
  3. Azoulay-Shemer T, Harpaz-Saad S, Cohen-Peer R et al (2011) Dual N- and C-terminal processing of citrus chlorophyllase precursor within the plastid membranes leads to the mature enzyme. Plant Cell Physiol 52:70–83PubMedCrossRefGoogle Scholar
  4. Bak S, Beisson F, Bishop G et al (2011) Cytochromes P450. Arabidopsis Book 9:e0144PubMedCentralPubMedCrossRefGoogle Scholar
  5. Banala S, Moser S, Müller T et al (2010) Hypermodified fluorescent chlorophyll catabolites: source of blue luminescence in senescent leaves. Angew Chem Int Ed 49:5174–5177CrossRefGoogle Scholar
  6. Barrett J, Jeffrey SW (1964) Chlorophyllase and formation of an atypical chlorophyllide in marine algae. Plant Physiol 39:44–47PubMedCentralPubMedCrossRefGoogle Scholar
  7. Barry CS, McQuinn RP, Chung MY (2008) Amino acid substitutions in homologs of the STAY-GREEN protein are responsible for the green-flesh and chlorophyll retainer mutations of tomato and pepper. Plant Physiol Biochem 147:179–187Google Scholar
  8. Benedetti CE, Arruda P (2002) Altering the expression of the chlorophyllase gene ATHCOR1 in transgenic Arabidopsis caused changes in the chlorophyll-to-chlorophyllide ratio. Plant Physiol 128:1255–1263PubMedCentralPubMedCrossRefGoogle Scholar
  9. Berghold J, Breuker K, Oberhuber M et al (2002) Chlorophyll breakdown in spinach: on the structure of five nonfluorescent chlorophyll catabolites. Photosynth Res 74:109–119PubMedCrossRefGoogle Scholar
  10. Berghold J, Eichmüller C, Hörtensteiner S, Kräutler B (2004) Chlorophyll breakdown in tobacco: on the structure of two nonfluorescent chlorophyll catabolites. Chem Biodivers 1:657–668PubMedCrossRefGoogle Scholar
  11. Berghold J, Müller T, Ulrich M (2006) Chlorophyll breakdown in maize: on the structure of two nonfluorescent chlorophyll catabolites. Monatsh Chem 137:751–763CrossRefGoogle Scholar
  12. Brandis A, Vainstein A, Goldschmidt EE (1996) Distribution of chlorophyllase among components of chloroplast membranes in Citrus sinensis organs. Plant Physiol Biochem 34:49–54Google Scholar
  13. Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46:471–510PubMedCrossRefGoogle Scholar
  14. Büchert AM, Civello PM, Martínez GA (2011) Characterization of Mg-dechelating substance in senescent and pre-senescent Arabidopsis thaliana leaves. Biol Plant 55:75–82CrossRefGoogle Scholar
  15. Christ B, Schelbert S, Aubry S et al (2012) MES16, a member of the methylesterase protein family, specifically demethylates fluorescent chlorophyll catabolites during chlorophyll breakdown in Arabidopsis. Plant Physiol 158:628–641PubMedCentralPubMedCrossRefGoogle Scholar
  16. Christ B, Süssenbacher I, Moser S et al (2013) Cytochrome P450 CYP89A9 is involved in the formation of major chlorophyll catabolites during leaf senescence in Arabidopsis. Plant Cell 25:1868–1880PubMedCentralPubMedCrossRefGoogle Scholar
  17. Curty C, Engel N (1996) Detection, isolation and structure elucidation of a chlorophyll a catabolite from autumnal senescent leaves of Cercidiphyllum japonicum. Phytochemistry 42:1531–1536CrossRefGoogle Scholar
  18. Dosnon-Olette R, Schröder P, Bartha B et al (2011) Enzymatic basis for fungicide removal by Elodea canadensis. Environ Sci Pollut Res 18:1015–1021CrossRefGoogle Scholar
  19. Downie A, Miyazaki S, Bohnert H et al (2004) Expression profiling of the response of Arabidopsis thaliana to methanol stimulation. Phytochemistry 65:2305–2316PubMedCrossRefGoogle Scholar
  20. Fall R, Benson AA (1996) Leaf methanol—the simplest natural product from plants. Trends Plant Sci 1:296–301CrossRefGoogle Scholar
  21. Feller U, Anders I, Mae T (2008) Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated. J Exp Bot 59:1615–1624PubMedCrossRefGoogle Scholar
  22. Ginsburg S, Matile P (1993) Identification of catabolites of chlorophyll porphyrin in senescent rape cotyledons. Plant Physiol 102:521–527PubMedCentralPubMedGoogle Scholar
  23. Ginsburg S, Schellenberg M, Matile P (1994) Cleavage of chlorophyll-porphyrin. Requirement for reduced ferredoxin and oxygen. Plant Physiol 105:545–554PubMedCentralPubMedGoogle Scholar
  24. Gout E, Aubert S, Bligny R et al (2000) Metabolism of methanol in plant cells. Carbon-13 nuclear magnetic resonance studies. Plant Physiol 123:287–296PubMedCentralPubMedCrossRefGoogle Scholar
  25. Gray J, Janick-Bruckner D, Bruckner B et al (2002) Light-dependent death of maize lls1 cells is mediated by mature chloroplasts. Plant Physiol 130:1894–1907PubMedCentralPubMedCrossRefGoogle Scholar
  26. Greenberg JT, Ausubel FM (1993) Arabidopsis mutants compromised for the control of cellular damage during pathogenesis and aging. Plant J 4:327–341PubMedCrossRefGoogle Scholar
  27. Harpaz-Saad S, Azoulay T, Arazi T et al (2007) Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated. Plant Cell 19:1007–1022PubMedCentralPubMedCrossRefGoogle Scholar
  28. Hirashima M, Satoh S, Tanaka R, Tanaka A (2006) Pigment shuffling in antenna systems achieved by expressing prokaryotic chlorophyllide a oxygenase in Arabidopsis. J Biol Chem 281:15385–15393PubMedCrossRefGoogle Scholar
  29. Hirashima M, Tanaka R, Tanaka A (2009) Light-independent cell death induced by accumulation of pheophorbide a in Arabidopsis thaliana. Plant Cell Physiol 50:719–729PubMedCrossRefGoogle Scholar
  30. Holden M (1961) The breakdown of chlorophyll by chlorophyllase. Biochem J 78:359–364PubMedCentralPubMedCrossRefGoogle Scholar
  31. Horie Y, Ito H, Kusaba M et al (2009) Participation of chlorophyll b reductase in the initial step of the degradation of light-harvesting chlorophyll a/b-protein complexes in Arabidopsis. J Biol Chem 284:17449–17456PubMedCentralPubMedCrossRefGoogle Scholar
  32. Hörtensteiner S (1998) NCC malonyltransferase catalyses the final step of chlorophyll breakdown in rape (Brassica napus). Phytochemistry 49:953–956PubMedCrossRefGoogle Scholar
  33. Hörtensteiner S (2006) Chlorophyll degradation during senescence. Annu Rev Plant Biol 57:55–77PubMedCrossRefGoogle Scholar
  34. Hörtensteiner S (2009) Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends Plant Sci 14:155–162PubMedCrossRefGoogle Scholar
  35. Hörtensteiner S (2013) Update on the biochemistry of chlorophyll breakdown. Plant Mol Biol 82(6):505–517PubMedCrossRefGoogle Scholar
  36. Hörtensteiner S, Feller U (2002) Nitrogen metabolism and remobilization during senescence. J Exp Bot 53:927–937PubMedCrossRefGoogle Scholar
  37. Hörtensteiner S, Kräutler B (2011) Chlorophyll breakdown in higher plants. Biochim Biophys Acta 1807:977–988PubMedCrossRefGoogle Scholar
  38. Hörtensteiner S, Vicentini F, Matile P (1995) Chlorophyll breakdown in senescent cotyledons of rape, Brassica napus L.: enzymatic cleavage of phaeophorbide a in vitro. New Phytol 129:237–246CrossRefGoogle Scholar
  39. Hörtensteiner S, Wüthrich KL, Matile P et al (1998) The key step in chlorophyll breakdown in higher plants. Cleavage of pheophorbide a macrocycle by a monooxygenase. J Biol Chem 273:15335–15339PubMedCrossRefGoogle Scholar
  40. Hörtensteiner S, Rodoni S, Schellenberg M et al (2000) Evolution of chlorophyll degradation: the significance of RCC reductase. Plant Biol 2:63–67CrossRefGoogle Scholar
  41. Igamberdiev AU, Bykova NV, Kleczkowski LA (1999) Origins and metabolism of formate in higher plants. Plant Physiol Biochem 37:503–513CrossRefGoogle Scholar
  42. Ischebeck T, Zbierzak AM, Kanwischer M, Dörmann P (2006) A salvage pathway for phytol metabolism in Arabidopsis. J Biol Chem 281:2470–2477PubMedCrossRefGoogle Scholar
  43. Iturraspe J, Moyano N, Frydman B (1995) A new 5-formylbilinone as the major chlorophyll a catabolite in tree senescent leaves. J Org Chem 60:6664–6665CrossRefGoogle Scholar
  44. Jakob-Wilk D, Holland D, Goldschmidt EE et al (1999) Chlorophyll breakdown by chlorophyllase: isolation and functional expression of the Chlase1 gene from ethylene-treated Citrus fruit and its regulation during development. Plant J 20:653–661CrossRefGoogle Scholar
  45. Jiang H, Li M, Liang N et al (2007) Molecular cloning and function analysis of the stay green gene in rice. Plant J 52:197–209PubMedCrossRefGoogle Scholar
  46. Jonker JW, Buitelaar M, Wagenaar E et al (2002) The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc Natl Acad Sci USA 99:15649–15654PubMedCentralPubMedCrossRefGoogle Scholar
  47. Kang K, Kim Y-S, Park S, Back K (2009) Senescence-induced serotonin biosynthesis and its role in delaying senescence in rice leaves. Plant Physiol 150:1380–1393PubMedCentralPubMedCrossRefGoogle Scholar
  48. Kang J, Park J, Choi H et al (2011a) Plant ABC transporters. Arabidopsis Book 9:e0153PubMedCentralPubMedCrossRefGoogle Scholar
  49. Kang K, Park S, Natsagdorj U et al (2011b) Methanol is an endogenous elicitor molecule for the synthesis of tryptophan and tryptophan-derived secondary metabolites upon senescence of detached rice leaves. Plant J 66:247–257PubMedCrossRefGoogle Scholar
  50. Kariola T, Brader G, Li J, Palva ET (2005) Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants. Plant Cell 17:282–294PubMedCentralPubMedCrossRefGoogle Scholar
  51. Kleffmann T, Russenberger D, von Zychlinski A et al (2004) The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr Biol 14:354–362PubMedCrossRefGoogle Scholar
  52. Kräutler B, Jaun B, Bortlik K-H et al (1991) On the enigma of chlorophyll degradation: the constitution of a secoporphinoid catabolite. Angew Chem Int Ed 30:1315–1318CrossRefGoogle Scholar
  53. Kräutler B, Banala S, Moser S et al (2010) A novel blue fluorescent chlorophyll catabolite accumulates in senescent leaves of the peace lily (Spathiphyllum wallisii) and indicates a divergent path of chlorophyll breakdown. FEBS Lett 584:4215–4221PubMedCrossRefGoogle Scholar
  54. Kusaba M, Ito H, Morita R et al (2007) Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell 19:1362–1375PubMedCentralPubMedCrossRefGoogle Scholar
  55. Li R, Ziola B, King J (2000) Purification and characterization of formate dehydrogenase from Arabidopsis thaliana. J Plant Physiol 157:161–167CrossRefGoogle Scholar
  56. Li R, Moore M, Bonham-Smith PC, King J (2002) Overexpression of formate dehydrogenase in Arabidopsis thaliana resulted in plants tolerant to high concentrations of formate. J Plant Physiol 159:1069–1076CrossRefGoogle Scholar
  57. Lippold F, Dorp K, vom Abraham M et al (2012) Fatty acid phytyl ester synthesis in chloroplasts of Arabidopsis. Plant Cell 24:2001–2014PubMedCentralPubMedCrossRefGoogle Scholar
  58. Losey FG, Engel N (2001) Isolation and characterization of a urobilinogenoidic chlorophyll catabolite from Hordeum vulgare L. J Biol Chem 276:27233–27236CrossRefGoogle Scholar
  59. Lu YP, Li ZS, Drozdowicz YM et al (1998) AtMRP2, an Arabidopsis ATP binding cassette transporter able to transport glutathione S-conjugates and chlorophyll catabolites: functional comparisons with AtMRP1. Plant Cell 10:267–282PubMedCentralPubMedGoogle Scholar
  60. Lundquist PK, Poliakov A, Bhuiyan NH et al (2012) The functional network of the Arabidopsis plastoglobule proteome based on quantitative proteomics and genome-wide coexpression analysis. Plant Physiol 158:1172–1192PubMedCentralPubMedCrossRefGoogle Scholar
  61. Luo Z, Zhang J, Li J et al (2013) A STAY-GREEN protein SlSGR1 regulates lycopene and β-carotene accumulation by interacting directly with SlPSY1 during ripening processes in tomato. New Phytol 198(2):442–452PubMedCrossRefGoogle Scholar
  62. Mach JM, Castillo AR, Hoogstraten R, Greenberg JT (2001) The Arabidopsis-accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. Proc Natl Acad Sci USA 98:771–776PubMedCentralPubMedCrossRefGoogle Scholar
  63. Makino A, Osmond B (1991) Effect of nitrogen nutrition on nitrogen partitioning between chloroplasts and mitochondria in pea and wheat. Plant Physiol 96:355–362PubMedCentralPubMedCrossRefGoogle Scholar
  64. Matile P, Schellenberg M, Peisker C (1992) Production and release of a chlorophyll catabolite in isolated senescent chloroplasts. Planta 187:230–235PubMedCrossRefGoogle Scholar
  65. Matile P, Hörtensteiner S, Thomas H, Kräutler B (1996) Chlorophyll breakdown in senescent leaves. Plant Physiol 112:1403–1409PubMedCentralPubMedGoogle Scholar
  66. Matile P, Schellenberg M, Vicentini F (1997) Localization of chlorophyllase in the chloroplast envelope. Planta 201:96–99CrossRefGoogle Scholar
  67. Matile P, Hörtensteiner S, Thomas H (1999) Chlorophyll degradation. Annu Rev Plant Physiol Plant Mol Biol 50:67–95PubMedCrossRefGoogle Scholar
  68. Mayer H (1930) Untersuchungen über die Chlorophyllase. Planta 11:294–330CrossRefGoogle Scholar
  69. Mecey C, Hauck P, Trapp M et al (2011) A critical role of STAYGREEN/Mendel’s I locus in controlling disease symptom development during Pseudomonas syringae pv tomato infection of Arabidopsis. Plant Physiol 157:1965–1974PubMedCentralPubMedCrossRefGoogle Scholar
  70. Meguro M, Ito H, Takabayashi A et al (2011) Identification of the 7-hydroxymethyl chlorophyll a reductase of the chlorophyll cycle in Arabidopsis. Plant Cell 23:3442–3453PubMedCentralPubMedCrossRefGoogle Scholar
  71. Mendel G (1866) Versuche über Pflanzenhybriden. Verh Naturforsch Ver Brünn 4:3–47Google Scholar
  72. Mochizuki N, Brusslan JA, Larkin R et al (2001) Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Natl Acad Sci USA 98:2053–2058PubMedCentralPubMedCrossRefGoogle Scholar
  73. Morita R, Sato Y, Masuda Y et al (2009) Defect in non-yellow coloring 3, an α/β hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence in rice. Plant J 59:940–952PubMedCrossRefGoogle Scholar
  74. Moser S, Aarts M, Müller T, Kräutler B (2008a) A yellow chlorophyll catabolite is a pigment of the fall colours. Photochem Photobiol Sci 7:1577–1581PubMedCentralPubMedCrossRefGoogle Scholar
  75. Moser S, Müller T, Ebert MO et al (2008b) Blue luminescence of ripening bananas. Angew Chem Int Ed 47:8954–8957CrossRefGoogle Scholar
  76. Moser S, Müller T, Holzinger A et al (2009) Fluorescent chlorophyll catabolites in bananas light up blue halos of cell death. Proc Natl Acad Sci USA 106:15538–15543PubMedCentralPubMedCrossRefGoogle Scholar
  77. Mühlecker W, Kräutler B (1996) Breakdown of chlorophyll: constitution of nonfluorescing chlorophyll-catabolites from senescent cotyledons of the dicot rape. Plant Physiol Biochem 34:61–75Google Scholar
  78. Mühlecker W, Ongania KH, Kräutler B et al (1997) Tracking down chlorophyll breakdown in plants: elucidation of the constitution of a “fluorescent” chlorophyll catabolite. Angew Chem Int Ed 36:401–404CrossRefGoogle Scholar
  79. Mühlecker W, Kräutler B, Moser D et al (2000) Breakdown of chlorophyll: a fluorescent chlorophyll catabolite from sweet pepper (Capsicum annuum). Helv Chim Acta 83:278–286CrossRefGoogle Scholar
  80. Müller T, Moser S, Ongania KH et al (2006) A divergent path of chlorophyll breakdown in the model plant Arabidopsis thaliana. ChemBioChem 7:40–42PubMedCrossRefGoogle Scholar
  81. Müller T, Ulrich M, Ongania KH, Kräutler B (2007) Colorless tetrapyrrolic chlorophyll catabolites found in ripening fruit are effective antioxidants. Angew Chem Int Ed 46:8699–8702CrossRefGoogle Scholar
  82. Müller T, Rafelsberger M, Vergeiner C, Kräutler B (2011) A dioxobilane as product of a divergent path of chlorophyll breakdown in Norway maple. Angew Chem Int Ed 50:10724–10727CrossRefGoogle Scholar
  83. Mur LAJ, Aubry S, Mondhe M et al (2010) Accumulation of chlorophyll catabolites photosensitizes the hypersensitive response elicited by Pseudomonas syringae in Arabidopsis. New Phytol 188:161–174PubMedCrossRefGoogle Scholar
  84. Nakajima S, Ito H, Tanaka R, Tanaka A (2012) Chlorophyll b reductase plays an essential role in maturation and storability of Arabidopsis seeds. Plant Physiol 160:261–273PubMedCentralPubMedCrossRefGoogle Scholar
  85. Obayashi T, Hayashi S, Saeki M et al (2009) ATTED-II provides coexpressed gene networks for Arabidopsis. Nucleic Acids Res 37:D987–D991PubMedCentralPubMedCrossRefGoogle Scholar
  86. Oberhuber M, Berghold J, Mühlecker W et al (2001) Chlorophyll breakdown—on a nonfluorescent chlorophyll catabolite from spinach. Helv Chim Acta 84:2615–2627CrossRefGoogle Scholar
  87. Oberhuber M, Berghold J, Breuker K et al (2003) Breakdown of chlorophyll: a nonenzymatic reaction accounts for the formation of the colorless “nonfluorescent” chlorophyll catabolites. Proc Natl Acad Sci USA 100:6910–6915PubMedCentralPubMedCrossRefGoogle Scholar
  88. Olson BJ, Skavdahl M, Ramberg H, Osterman JC, Markwell J (2000) Formate dehydrogenase in Arabidopsis thaliana: characterization and possible targeting to the chloroplast. Plant Sci 159:205–212PubMedCrossRefGoogle Scholar
  89. Osmani SA, Bak S, Møller BL (2009) Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling. Phytochemistry 70:325–347PubMedCrossRefGoogle Scholar
  90. Paquette S, Møller BL, Bak S (2003) On the origin of family 1 plant glycosyltransferases. Phytochemistry 62:399–413PubMedCrossRefGoogle Scholar
  91. Park SY, Yu JW, Park JS et al (2007) The senescence-induced STAYGREEN protein regulates chlorophyll degradation. Plant Cell 19:1649–1664PubMedCentralPubMedCrossRefGoogle Scholar
  92. Pattanayak GK, Venkataramani S, Hortensteiner S et al (2012) ACCELERATED CELL DEATH 2 suppresses mitochondrial oxidative bursts and modulates cell death in Arabidopsis. Plant J 69:589–600PubMedCentralPubMedCrossRefGoogle Scholar
  93. Pedras MSC, Zaharia IL, Gai Y et al (2001) In planta sequential hydroxylation and glycosylation of a fungal phytotoxin: avoiding cell death and overcoming the fungal invader. Proc Natl Acad Sci USA 98:747–752PubMedCentralPubMedCrossRefGoogle Scholar
  94. Peoples MB, Dalling MJ (1988) The interplay between proteolysis and amino acid metabolism during senescence and nitrogen allocation. In: Noodén LD, Leopold AC (eds) Senescence Aging Plants. Academic Press, San Diego, pp 181–217Google Scholar
  95. Pružinská A, Anders I, Tanner G et al (2003) Chlorophyll breakdown: pheophorbide a oxygenase is a Rieske-type iron-sulfur protein, encoded by the accelerated cell death 1 gene. Proc Natl Acad Sci USA 100:15259–15264PubMedCentralPubMedCrossRefGoogle Scholar
  96. Pružinská A, Tanner G, Aubry S et al (2005) Chlorophyll breakdown in senescent Arabidopsis leaves: characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction. Plant Physiol 139:52–63PubMedCentralPubMedCrossRefGoogle Scholar
  97. Pružinská A, Anders I, Aubry S et al (2007) In vivo participation of red chlorophyll catabolite reductase in chlorophyll breakdown. Plant Cell 19:369–387PubMedCentralPubMedCrossRefGoogle Scholar
  98. Ren G, An K, Liao Y et al (2007) Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis. Plant Physiol 144:1429–1441PubMedCentralPubMedCrossRefGoogle Scholar
  99. Ren GD, Zhou Q, Wu SX et al (2010) Reverse genetic identification of CRN1 and its distinctive role in chlorophyll degradation in Arabidopsis. J Integr Plant Biol 52:496–504PubMedGoogle Scholar
  100. Rodoni S, Mühlecker W, Anderl M et al (1997) Chlorophyll breakdown in senescent chloroplasts. Cleavage of pheophorbide a in two enzymic steps. Plant Physiol 115:669–676PubMedCentralPubMedCrossRefGoogle Scholar
  101. Saga Y, Tamiaki H (2012) Demetalation of chlorophyll pigments. Chem Biodivers 9:1659–1683PubMedCrossRefGoogle Scholar
  102. Sakuraba Y, Yokono M, Akimoto S et al (2010) Deregulated chlorophyll b synthesis reduces the energy transfer rate between photosynthetic pigments and induces photodamage in Arabidopsis thaliana. Plant Cell Physiol 51:1055–1065PubMedCrossRefGoogle Scholar
  103. Sakuraba Y, Balazadeh S, Tanaka R et al (2012a) Overproduction of Chl b retards senescence through transcriptional reprogramming in Arabidopsis. Plant Cell Physiol 53:505–517PubMedCrossRefGoogle Scholar
  104. Sakuraba Y, Schelbert S, Park SY et al (2012b) STAY-GREEN and chlorophyll catabolic enzymes interact at light-harvesting complex II for chlorophyll detoxification during leaf senescence in Arabidopsis. Plant Cell 24:507–518PubMedCentralPubMedCrossRefGoogle Scholar
  105. Sakuraba Y, Kim YS, Yoo SC et al (2013) 7-Hydroxymethyl chlorophyll a reductase functions in metabolic channeling of chlorophyll breakdown intermediates during leaf senescence. Biochem Biophys Res Commun 430:32–37PubMedCrossRefGoogle Scholar
  106. Sato Y, Moria R, Katsuma S (2009) Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. Plant J 57:120–131PubMedCrossRefGoogle Scholar
  107. Scheer H (2006) An overview of chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. In: Grimm B, Porra R, Rüdiger W, Scheer H (eds) Chlorophylls bacteriochlorophylls biochemistry biophysics functions and applications. Springer, Dordrecht, pp 1–26CrossRefGoogle Scholar
  108. Schelbert S, Aubry S, Burla B et al (2009) Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. Plant Cell 21:767–785PubMedCentralPubMedCrossRefGoogle Scholar
  109. Schellenberg M, Matile P, Thomas H (1990) Breakdown of chlorophyll in chloroplasts of senescent barley leaves depends on ATP. J Plant Physiol 136:564–568CrossRefGoogle Scholar
  110. Schellenberg M, Matile P, Thomas H (1993) Production of a presumptive chlorophyll catabolite in vitro: requirement for reduced ferredoxin. Planta 191:417–420CrossRefGoogle Scholar
  111. Schenk N, Schelbert S, Kanwischer M et al (2007) The chlorophyllases AtCLH1 and AtCLH2 are not essential for senescence-related chlorophyll breakdown in Arabidopsis thaliana. FEBS Lett 581:5517–5525PubMedCrossRefGoogle Scholar
  112. Scherl M, Müller T, Kräutler B (2012) Chlorophyll catabolites in senescent leaves of the lime tree (Tilia cordata). Chem Biodivers 9:2605–2617PubMedCentralPubMedCrossRefGoogle Scholar
  113. Schuler MA, Duan H, Bilgin M, Ali S (2006) Arabidopsis cytochrome P450s through the looking glass: a window on plant biochemistry. Phytochem Rev 5:205–237CrossRefGoogle Scholar
  114. Shimoda Y, Ito H, Tanaka A (2012) Conversion of chlorophyll b to chlorophyll a precedes magnesium dechelation for protection against necrosis in Arabidopsis. Plant J 72:501–511PubMedCrossRefGoogle Scholar
  115. Shioi Y, Tomita N, Tsuchiya T, Takamiya K (1996a) Conversion of chlorophyllide to pheophorbide by Mg-dechelating substance in extracts of Chenopodium album. Plant Physiol Biochem 34:41–47Google Scholar
  116. Shioi Y, Watanabe K, Takamiya K (1996b) Enzymatic conversion of pheophorbide a to a precursor of pyropheophorbide a in leaves of Chenopodium album. Plant Cell Physiol 37:1143–1149CrossRefGoogle Scholar
  117. Spassieva S, Hille J (2002) A lesion mimic phenotype in tomato obtained by isolating and silencing an Lls1 homologue. Plant Sci 162:543–549CrossRefGoogle Scholar
  118. Sugishima M, Kitamori Y, Noguchi M et al (2009) Crystal structure of red chlorophyll catabolite reductase: enlargement of the ferredoxin-dependent bilin reductase family. J Mol Biol 389:376–387PubMedCrossRefGoogle Scholar
  119. Sugishima M, Okamoto Y, Noguchi M et al (2010) Crystal structures of the substrate-bound forms of red chlorophyll catabolite reductase: implications for site-specific and stereospecific reaction. J Mol Biol 402:879–891PubMedCrossRefGoogle Scholar
  120. Suzuki Y, Shioi Y (1999) Detection of chlorophyll breakdown products in the senescent leaves of higher plants. Plant Cell Physiol 40:909–915CrossRefGoogle Scholar
  121. Suzuki T, Shioi Y (2002) Re-examination of Mg-dechelation reaction in the degradation of chlorophylls using chlorophyllin a as substrate. Photosynth Res 74:217–223PubMedCrossRefGoogle Scholar
  122. Suzuki Y, Tanabe K, Shioi Y (1999) Determination of chemical oxidation products of chlorophyll and porphyrin by high-performance liquid chromatography. J Chromatogr A 839:85–91CrossRefGoogle Scholar
  123. Suzuki Y, Doi M, Shioi Y (2002) Two enzymatic reaction pathways in the formation of pyropheophorbide a. Photosynth Res 74:225–233PubMedCrossRefGoogle Scholar
  124. Suzuki Y, Amano T, Shioi Y (2006) Characterization and cloning of the chlorophyll-degrading enzyme pheophorbidase from cotyledons of radish. Plant Physiol 140:716–725PubMedCentralPubMedCrossRefGoogle Scholar
  125. Tanaka R, Tanaka A (2011) Chlorophyll cycle regulates the construction and destruction of the light-harvesting complexes. Biochim Biophys Acta 1807:968–976PubMedCrossRefGoogle Scholar
  126. Tanaka R, Hirashima M, Satoh S, Tanaka A (2003) The Arabidopsis-accelerated cell death gene ACD1 is involved in oxygenation of pheophorbide a: inhibition of pheophorbide a oxygenase activity does not lead to the “stay-green” phenotype in Arabidopsis. Plant Cell Physiol 44:1266–1274PubMedCrossRefGoogle Scholar
  127. Tang Y, Li M, Chen Y et al (2011) Knockdown of OsPAO and OsRCCR1 causes different plant death phenotypes in rice. J Plant Physiol 168:1952–1959PubMedCrossRefGoogle Scholar
  128. Thomas H, Howarth CJ (2000) Five ways to stay green. J Exp Bot 51:329–337PubMedCrossRefGoogle Scholar
  129. Tommasini R, Vogt E, Fromenteau M et al (1998) An ABC transporter of Arabidopsis thaliana has both glutathione-conjugate and chlorophyll catabolite transport activity. Plant J 13:773–780PubMedCrossRefGoogle Scholar
  130. Tsuchiya T, Ohta H, Okawa K et al (1999) Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate. Proc Natl Acad Sci USA 96:15362–15367PubMedCentralPubMedCrossRefGoogle Scholar
  131. Valentin HE, Lincoln K, Moshiri F et al (2006) The Arabidopsis vitamin E pathway gene5-1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. Plant Cell 18:212–224PubMedCentralPubMedCrossRefGoogle Scholar
  132. Vergeiner C, Banala S, Kräutler B (2013) Chlorophyll breakdown in senescent banana leaves: catabolism reprogrammed for biosynthesis of persistent blue fluorescent tetrapyrroles. Chem Eur J 19(37):12294–12305PubMedCentralPubMedCrossRefGoogle Scholar
  133. Vicentini F, Iten F, Matile P (1995) Development of an assay for Mg-dechelatase of oilseed rape cotyledons, using chlorophyllin as the substrate. Physiol Plant 94:57–63CrossRefGoogle Scholar
  134. Wagner D, Przybyla D, op den Camp R et al (2004) The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science 306:1183–1185PubMedCrossRefGoogle Scholar
  135. Willstätter R, Stoll A (1911) Examinations on chlorophyll, XI chlorophyllase. Justus Liebigs Ann Chem 378:18–72CrossRefGoogle Scholar
  136. Wüthrich KL, Bovet L, Hunziker PE et al (2000) Molecular cloning, functional expression and characterisation of RCC reductase involved in chlorophyll catabolism. Plant J 21:189–198PubMedCrossRefGoogle Scholar
  137. Yao N, Greenberg JT (2006) Arabidopsis ACCELERATED CELL DEATH2 modulates programmed cell death. Plant Cell 18:397–411PubMedCentralPubMedCrossRefGoogle Scholar
  138. Zhang K, Gan SS (2012) An abscisic acid-AtNAP transcription factor-SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves. Plant Physiol 158:961–969PubMedCentralPubMedCrossRefGoogle Scholar
  139. Zhou C, Han L, Pislariu C et al (2011) From model to crop: functional analysis of a STAY-GREEN gene in the model legume Medicago truncatula and effective use of the gene for Alfalfa improvement. Plant Physiol 157:1483–1496PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of Plant BiologyUniversity of ZurichZurichSwitzerland

Personalised recommendations