Journal of Plant Growth Regulation

, Volume 32, Issue 3, pp 564–574 | Cite as

Dynamics of Endogenous Phytohormones during Desiccation and Recovery of the Resurrection Plant Species Haberlea rhodopensis

  • Dimitar L. Djilianov
  • Petre I. Dobrev
  • Daniela P. Moyankova
  • Radomira Vankova
  • Dessislava Ts. Georgieva
  • Silvia Gajdošová
  • Václav Motyka


Drought is one of the most significant threats to world agriculture and hampers the supply of food and energy. The mechanisms of drought responses can be studied using resurrection plants that are able to survive extreme dehydration. As plant hormones function in an intensive cross-talk, playing important regulatory roles in the perception and response to unfavorable environments, the dynamics of phytohormones was followed in the resurrection plant Haberlea rhodopensis Friv. during desiccation and subsequent recovery. Analysis of both leaves and roots revealed that jasmonic acid, along with and even earlier than abscisic acid, serves as a signal triggering the response of the resurrection plants to desiccation. The steady high levels of salicylic acid could be considered an integral part of the specific set of parameters that prime H. rhodopensis desiccation tolerance. The dynamic changes of cytokinins and auxins suggest that these hormones actively participate in the dehydration response and development of desiccation tolerance in the resurrection plants. Our data contribute to the elucidation of a global complex picture of the resurrection plant’s ability to withstand desiccation, which might be successfully utilized in crop improvement.


Abscisic acid Auxin Cytokinin Desiccation tolerance Haberlearhodopensis Jasmonic acid Phytohormones Resurrection plant Salicylic acid 



The authors thank Antoniya Radeva and Marie Korecká for their invaluable technical support. This research was supported by the Czech Science Foundation (Grants P506/11/0774, 522/09/2058, and 206/09/2062).

Supplementary material

344_2013_9323_MOESM1_ESM.docx (460 kb)
Supplementary material 1 (DOCX 461 kb)


  1. Albrecht T, Kehlen A, Stahl K, Knöfel HD, Sembdner G, Weile EW (1993) Quantification of rapid, transient increases in jasmonic acid in wounded plants using a monoclonal antibody. Planta 191:86–94CrossRefGoogle Scholar
  2. Bano A, Hansen H, Dörffling K, Hahn H (1994) Changes in the contents of free and conjugated abscisic acid, phaseic acid and cytokinins in xylem sap of drought stressed sunflower plants. Phytochemistry 37(2):345–347CrossRefGoogle Scholar
  3. Barr HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficit in leaves. Austral J Biol Sci 15:413–428Google Scholar
  4. Bartels D, Hussain SS (2011) Resurrection plants: physiology and molecular biology. In: Lüttge U, Beck E, Bartels D (eds) Plant desiccation tolerance. Springer, Berlin, pp 339–365CrossRefGoogle Scholar
  5. Bartels D, Salamini F (2001) Desiccation tolerance in the resurrection plant Craterostigma plantagineum. A contribution to the study of drought tolerance at the molecular level. Plant Physiol 127:1346–1353PubMedCrossRefGoogle Scholar
  6. Bartels D, Schneider K, Terstappen G, Piatkowski D, Salamini F (1990) Molecular cloning of abscisic acid-modulated genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum. Planta 181:27–34CrossRefGoogle Scholar
  7. Bartels D, Hanke C, Schneider K, Michel D, Salamini F (1992) A desiccation-related Elip-like gene from the resurrection plant Craterostigma plantagineum is regulated by light and ABA. EMBO J 11:2771–2778PubMedGoogle Scholar
  8. Blomstedt C, Gianello R, Hamill J, Neale A, Gaff D (1998) Drought-stimulated genes correlated with desiccation tolerance of the resurrection grass Sporobolus stapfianus. Plant Growth Regul 24:153–161CrossRefGoogle Scholar
  9. Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54CrossRefGoogle Scholar
  10. Brosché M, Kangasjärvi J (2012) Low antioxidant concentrations impact on multiple signalling pathways in Arabidopsis thaliana partly through NPR1. J. Exp Bot 63:1849–1861PubMedCrossRefGoogle Scholar
  11. Creelman RA, Mullet JE (1995) Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci USA 92:4114–4119PubMedCrossRefGoogle Scholar
  12. Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381PubMedCrossRefGoogle Scholar
  13. Cushman J, Oliver M (2011) Understanding vegetative desiccation tolerance using integrated functional genomics approaches within a comparative evolutionary framework. In: Lüttge U, Beck E, Bartels D (eds) Plant desiccation tolerance ecological studies 215: analysis and synthesis. Springer, Heidelberg, pp 307–338CrossRefGoogle Scholar
  14. Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679PubMedCrossRefGoogle Scholar
  15. Djilianov D, Gerrits M, Ivanova A, Van Onckelen H, De Klerk GJ (1994) ABA content and sensitivity during the development of dormancy in lily bulblets regenerated in vitro. Physiol Plant 91(4):639–644CrossRefGoogle Scholar
  16. Djilianov D, Prinsen E, Oden S, Van Onckelen H, Müller J (2003) Nodulation under salt stress of alfalfa lines obtained after in vitro selection for osmotic tolerance. Plant Sci 165:887–894CrossRefGoogle Scholar
  17. Djilianov D, Genova G, Parvanova D, Zapryanova N, Konstantinova T, Atanassov A (2005) In vitro culture of the resurrection plant Haberlea rhodopensis. Plant Cell Tissue Org Cult 80:115–118CrossRefGoogle Scholar
  18. Djilianov D, Ivanov S, Moyankova D, Miteva L, Kirova E, Alexieva V, Joudi M, Peshev D, Van den Ende W (2011) Sugar ratios, glutathione redox status and phenols in the resurrection species Haberlea rhodopensis and the closely related non-resurrection species Chirita eberhardtii. Plant Biol 13:767–776PubMedCrossRefGoogle Scholar
  19. Dobrá J, Motyka V, Dobrev P, Malbeck J, Prášil IT, Haisel D, Gaudinová A, Havlová M, Gubiš J, Vaňková R (2010) Comparison of hormonal responses to heat, drought and combined stress in tobacco plants with elevated proline content. J Plant Physiol 167:1360–1370PubMedCrossRefGoogle Scholar
  20. Dobrev P, Kamínek M (2002) Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr A 950:21–29PubMedCrossRefGoogle Scholar
  21. Dobrev PI, Vankova R (2012) Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues. Methods Mol Biol 913:251–261PubMedGoogle Scholar
  22. Gaff DF, Loveys BR (1984) Abscisic-acid content and effects during dehydration of detached leaves of desiccation tolerant plants. J Exp Bot 35:1350–1358CrossRefGoogle Scholar
  23. Gaff DF, Loveys BR (1992) Abscisic acid levels in drying plants of a resurrection grass. Trans Malaysian Soc Plant Physiol 3:286–287Google Scholar
  24. Gajdošová S, Spíchal L, Kamínek M, Hoyerová K, Novák O, Dobrev PI, Galuszka P, Klíma P, Gaudinová A, Žižková E, Hanuš J, Dančák M, Trávníček B, Pešek B, Krupička M, Vaňková R, Strnad M, Motyka V (2011) Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J Exp Bot 62:2827–2840PubMedCrossRefGoogle Scholar
  25. Georgieva T, Christov N, Djilianov D (2012) Identification of desiccation-regulated genes by cDNA-AFLP in Haberlea rhodopensis—a resurrection plant. Acta Physiol Plant 34:1055–1066CrossRefGoogle Scholar
  26. Ghasempour HR, Anderson EM, Gaff DF (2001) Effects of growth substances on the protoplasmic drought tolerance of leaf cells of the resurrection grass, Sporobolus stapfianus. Aust J Plant Physiol 28:1115–1120Google Scholar
  27. Glauser G, Grata E, Dubugnon L, Rudaz S, Farmer E, Wolfender JL (2008) Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding. J Biol Chem 283(24):16400–16407PubMedCrossRefGoogle Scholar
  28. Ha S, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP (2012) Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci 17:172–179PubMedCrossRefGoogle Scholar
  29. Hare PD, Cress WA, Van Staden J (1997) The involvement of cytokinins in plant responses to environmental stress. Plant Growth Regul 23:79–103CrossRefGoogle Scholar
  30. Havlová M, Dobrev PI, Motyka V, Štorchová H, Libus J, Dobrá J, Malbeck J, Gaudinová A, Vaňková R (2008) The role of cytokinins in responses to water deficit in tobacco plants over-expressing trans-zeatin O-glucosyltransferase under 35S or SAG12 promoters. Plant Cell Environ 31:341–353PubMedCrossRefGoogle Scholar
  31. Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25CrossRefGoogle Scholar
  32. Hellwege EM, Dietz KJ, Volk OH, Hartung W (1994) Abscisic acid and the induction of desiccation tolerance in the extremely xerophilic liverwort Exormotheca holstii. Planta 194:525–531CrossRefGoogle Scholar
  33. Hellwege EM, Dietz KJ, Hartung W (1996) Abscisic acid causes changes in gene expression involved in the induction of the land form of the liverwort Riccia fluitans L. Planta 198:423–432PubMedCrossRefGoogle Scholar
  34. Hirose N, Takei K, Kuroha T, Kamada-Nobusada T, Hayashi H, Sakakibara H (2008) Regulation of cytokinin biosynthesis, compartmentalization and translocation. J Exp Bot 59:75–83PubMedCrossRefGoogle Scholar
  35. Hu X, Li W, Chen Q, Yang Y (2009) Early signal transduction linking the synthesis of jasmonic acid in plant. Plant Signal Behav 4(8):696–697PubMedCrossRefGoogle Scholar
  36. Ingram J, Bartels D (1996) The molecular bases of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403PubMedCrossRefGoogle Scholar
  37. Iqbal N, Nazar R, Khan MIR, Masood A, Khan NA (2011) Role of gibberellins in regulation of source-sink relations under optimal and limiting environmental conditions. Curr Sci 100:998–1007Google Scholar
  38. Ismail A, Riemann M, Nick P (2012) The jasmonate pathway mediates salt tolerance in grapevines. J Exp Bot 63:2127–2139PubMedCrossRefGoogle Scholar
  39. Kamínek M, Březinová A, Gaudinová A, Motyka V, Vaňková R, Zažímalová E (2000) Purine cytokinins: a proposal of abbreviations. Plant Growth Regul 32:253–256CrossRefGoogle Scholar
  40. Le TN, McQueen-Mason SJ (2006) Desiccation-tolerant plants in dry environments. Rev Environ Sci Biotechnol 5:269–279CrossRefGoogle Scholar
  41. Lloyd GB, McCown BH (1980) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Proc Int Plant Propag Soc 30:421–427Google Scholar
  42. Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T, Sakakibara H, Schmülling T, Tran LSP (2011) Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23:2169–2183PubMedCrossRefGoogle Scholar
  43. Oliver MJ, Tuba Z, Mishler BD (2000) The evolution of vegetative desiccation tolerance in land plants. Plant Ecol 151:85–100CrossRefGoogle Scholar
  44. Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295PubMedCrossRefGoogle Scholar
  45. Petrova G, Tosheva A, Mladenov P, Moyankova D, Djilianov D (2010) Ex situ collection of model resurrection plant Haberlea rhodopensis as a prerequisite for biodiversity and conservation studies. Biotechnol Biotech Eq 24:1955–1960CrossRefGoogle Scholar
  46. Piatkowski D, Schneider K, Salamini F, Bartels D (1990) Characterization of five abscisic acid-responsive cDNA clones from the desiccation-tolerant plant Craterostigma plantagineum and their relationship to other water-stress genes. J Plant Physiol 94:1682–1688CrossRefGoogle Scholar
  47. Reynolds TL, Bewley JD (1993) Abscisic acid enhances the ability of the desiccation tolerant fern Polypodium virginianum to withstand drying. J Exp Bot 44:1771–1779CrossRefGoogle Scholar
  48. Ribaut JM, Pilet PE (1994) Water-stress and indol-3yl-acetic acid content of maize roots. Planta 193:502–507CrossRefGoogle Scholar
  49. Rodriguez MCS, Edsgard D, Hussain SS, Alquezar D, Rasmussen M, Gilbert T, Nielsen BH, Bartels D, Mundy J (2010) Transcriptomes of the desiccation-tolerant resurrection plant Craterostigma plantagineum. Plant J 63:212–228PubMedCrossRefGoogle Scholar
  50. Sasaki-Sekimoto Y, Taki N, Obayashi T, Aono M, Matsumoto F, Sakurai N, Suzuki H, Yokota-Hirai M, Noji M, Saito K, Masuda T, Takamiya K, Shibata D, Ohta H (2005) Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis. Plant J 44:653–668PubMedCrossRefGoogle Scholar
  51. Schiller P, Heilmeier H, Hartung W (1997) Abscisic acid (ABA) relations in the aquatic resurrection plant Chamaegigas intrepidus under naturally fluctuating environmental conditions. New Phytol 136:603–611CrossRefGoogle Scholar
  52. Seiler C, Harshavardhan VT, Rajesh K, Reddy PS, Strickert M, Rolletschek H, Scholz U, Wobus U, Sreenivasulu N (2011) ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions. J Exp Bot 62(8):2615–2632PubMedCrossRefGoogle Scholar
  53. Tarkowska D, Filek C, Biesaga-Koscielniak J, Marcinska I, Krekule J, Strnad M (2012) Cytokinins in shoot apices of Brassica napus plants during vernalization. Plant Sci 187:105–112PubMedCrossRefGoogle Scholar
  54. Toldi O, Tuba Z, Scott P (2009) Vegetative desiccation tolerance: Is it a goldmine for bioengineering crops? Plant Sci 176:187–199CrossRefGoogle Scholar
  55. Tuba Z, Lichtenthaler H (2011) Ecophysiology of homoiochlorophyllous and poikilochlorophyllous desiccation-tolerant plants and vegetations. In: Lüttge U, Beck E, Bartels D (eds) Plant desiccation tolerance. Springer, Berlin, pp 157–184CrossRefGoogle Scholar
  56. Vicre M, Farrant J, Drouich A (2004) Insights into the cellular mechanisms of desiccation tolerance among angiosperm resurrection plant species. Plant Cell Environ 27:1329–1340CrossRefGoogle Scholar
  57. Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206PubMedCrossRefGoogle Scholar
  58. Vyroubalová Š, Václavíková K, Turečková V, Novák O, Šmehilová M, Hluska T, Ohnoutková L, Frébort I, Galuszka P (2009) Characterization of new maize genes putatively involved in cytokinin metabolism and their expression during osmotic stress in relation to cytokinin levels. Plant Physiol 151:433–447PubMedCrossRefGoogle Scholar
  59. Wang X, Chen S, Zhang H, Shi L, Cao F, Guo L, Xie Y, Wang T, Yan X, Dai S (2010) Desiccation tolerance mechanism in resurrection fern-ally Selaginella tamascina revealed by physiological and proteomic analysis. J Proteome Res 9:6561–6577PubMedCrossRefGoogle Scholar
  60. Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697PubMedCrossRefGoogle Scholar
  61. Wasternack C, Stenzel I, Hause B, Hause G, Kuter C, Maucher H, Neumerkel J, Feussner I, Miersch O (2006) The wound response in tomato—role of jasmonic acid. J Plant Physiol 163(3):297–306PubMedCrossRefGoogle Scholar
  62. Werner O, Espin RMR, Bopp M, Atzorn R (1991) Abscisic-acid-induced drought tolerance in Funaria hygrometrica Hedw. Planta 186:99–103CrossRefGoogle Scholar
  63. Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550PubMedCrossRefGoogle Scholar
  64. Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735PubMedCrossRefGoogle Scholar
  65. Xiang CB, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550PubMedGoogle Scholar
  66. Xin ZY, Zhou X, Pilet PE (1997) Level changes of jasmonic, abscisic and indole-3yl-acetic acids in maize under desiccation stress. J Plant Physiol 151:120–124CrossRefGoogle Scholar
  67. Yang YN, Qi M, Mei CS (2004) Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Plant J 40:909–919PubMedCrossRefGoogle Scholar
  68. Yun-xia G, Li-jun Z, Feng-hai L, Zhi-bin Ch, Che W, Yun-cong Y, Zhen-hai H, Jie Z, Zhen-sheng S (2010) Relationship between jasmonic acid accumulation and senescence in drought-stress. African J Agric Res 5(15):1978–1983Google Scholar
  69. Zeevaart JAD, Creelman RA (1988) Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol 39:439–473CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Dimitar L. Djilianov
    • 1
  • Petre I. Dobrev
    • 2
  • Daniela P. Moyankova
    • 1
  • Radomira Vankova
    • 2
  • Dessislava Ts. Georgieva
    • 1
  • Silvia Gajdošová
    • 2
    • 3
  • Václav Motyka
    • 2
  1. 1.Abiotic Stress Group, AgroBioInstitute, Agricultural AcademySofiaBulgaria
  2. 2.Institute of Experimental Botany, Academy of Sciences of the Czech RepublicPrague 6Czech Republic
  3. 3.Institute of Biology and EcologyPavol Jozef Šafárik UniversityKošiceSlovak Republic

Personalised recommendations