Journal of Plant Growth Regulation

, Volume 32, Issue 3, pp 551–563 | Cite as

Effects of Water-Deficit Irrigation on Hormonal Content and Nitrogen Compounds in Developing Berries of Vitis vinifera L. cv. Tempranillo

  • María Niculcea
  • Leticia Martinez-Lapuente
  • Zenaida Guadalupe
  • Manuel Sánchez-Díaz
  • Fermín Morales
  • Belén Ayestarán
  • M. Carmen AntolínEmail author


Water-deficit irrigation to grapevines reduces plant growth, yield, and berry growth, altering the ripening process, all of which may influence fruit composition and wine quality. Therefore, the goals of this study were (1) to investigate the influence of the main endogenous berry hormones, abscisic acid (ABA), indole-3-acetic acid (IAA), salicylic acid (SA), and jasmonic acid (JA), on berry growth and ripening under water-deficit conditions and (2) to analyze changes in fruit composition, specifically N compounds, under water deprivation. The study was carried out using container-grown Tempranillo grapevines grown under controlled conditions in a greenhouse. Two irrigation treatments were imposed: control (well-watered) and sustained deficit irrigation (SDI). Water deficit decreased leaf area and the source-to-sink ratio, reduced yield and berry size, and decreased concentrations of the main phenolic compounds. SDI also modified berry hormonal status. At the pea-size stage, SDI berries had lower IAA and higher JA and SA than nonstressed berries. At veraison (onset of ripening), accumulation of ABA was less accentuated in SDI than in control berries. At harvest, the content of amino acids and free ammonium was low in both treatments but SDI-treated berries showed a significant accumulation of amines. Results suggest that water restrictions to grapevines might be playing a physiological role in reducing berry growth through affecting hormone dynamics, phenolic synthesis, and the berry amino acid content and composition, which could compromise fruit quality. Possible roles of endogenous IAA controlling berry size and endogenous ABA and SA controlling levels of anthocyanins and flavonols at harvest are discussed.


Abscisic acid Amines Amino acids Auxins Salicylic acid Sustained deficit irrigation 



This work was supported by Fundación Universitaria de Navarra (2011) and Ministerio de Ciencia e Innovación (MCINN BFU2011-26989), Spain. F. Morales thanks Gobierno de Aragón (A03 research group) for financial support. M. Niculcea was the recipient of a grant from Asociación de Amigos de la Universidad de Navarra. The authors thank F. Aguirrezábal [Estación de Viticultura y Enología de Navarra (EVENA), Spain] for providing grapevine cuttings, and A. Urdiáin and M. Oyárzun for technical assistance during experiments.


  1. Ali K, Maltese F, Choi YH, Verpoorte R (2010) Metabolic constituents of grapevine and grape-derived products. Phytochem Rev 9:357–378PubMedCrossRefGoogle Scholar
  2. Ancín-Azpilicueta C, González-Marco A, Jiménez-Moreno N (2008) Current knowledge about the presence of amines in wine. Crit Rev Food Sci 48:257–275CrossRefGoogle Scholar
  3. Antolín MC, Ayari M, Sánchez-Díaz M (2006) Effects of partial rootzone drying on yield, ripening and berry ABA in potted Tempranillo grapevines with split roots. Aust J Grape Wine Res 12:13–20CrossRefGoogle Scholar
  4. Antolín MC, Santesteban H, Santa María E, Aguirreolea J, Sánchez-Díaz M (2008) Involvement of abscisic acid and polyamines in berry ripening of Vitis vinifera (L.) subjected to water deficit irrigation. Aust J Grape Wine Res 14:123–133CrossRefGoogle Scholar
  5. Antolín MC, Santesteban H, Ayari M, Aguirreolea J, Sánchez-Díaz M (2010) Grapevine fruiting cuttings: an experimental system to study grapevine physiology under water deficit conditions. In: Delrot S, Medrano Gil H, Or E, Bavaresco L, Grando S (eds) Methodologies and results in grapevine research. Springer Science+Business Media, Berlin, pp 151–163CrossRefGoogle Scholar
  6. Asghari M, Aghdam MS (2010) Impact of salicylic acid on post-harvest physiology of horticultural crops. Trends Food Sci Technol 21:502–509CrossRefGoogle Scholar
  7. Baigorri H, Antolín C, De Luis I, Gény L, Broquedis M, Aguirrezábal F, Sánchez-Díaz M (2001) Influence of training system on the reproductive development and hormonal levels of Vitis vinifera L. cv. Tempranillo. Am J Enol Vitic 52:357–364Google Scholar
  8. Basile B, Marsal J, Mata M, Vallverdú X, Bellvert J, Girona J (2011) Phenological sensitivity of Cabernet Sauvignon to water stress: vine physiology and berry composition. Am J Enol Vitic 62:452–461CrossRefGoogle Scholar
  9. Bell SJ, Henschke PA (2005) Implications of nitrogen nutrition for grapes, fermentation and wine. Aust J Grape Wine Res 11:242–295CrossRefGoogle Scholar
  10. Böttcher C, Keyzers RA, Boss PK, Davies C (2010a) Sequestration of auxin by the indole-3-acetic acid-amino synthetase GH3-1 in grape berry (Vitis vinifera L.) and the proposed role of auxin conjugation during ripening. J Exp Bot 61:3615–3625PubMedCrossRefGoogle Scholar
  11. Böttcher C, Harvey K, Forde CG, Boss PK, Davies C (2010b) Auxin treatment of pre-veraison grape (Vitis vinifera L.) berries both delays ripening and increases the synchronicity of sugar accumulation. Aust J Grape Wine Res 17:1–8CrossRefGoogle Scholar
  12. Bover-Cid S, Izquierdo-Pulido M, Mariné-Font A, Vidal-Carou MC (2006) Biogenic mono-, di- and polyamine contents in Spanish wines and influence of a limited irrigation. Food Chem 96:43–47CrossRefGoogle Scholar
  13. Castellarin SD, Matthews MA, Di Gaspero G, Gambetta GA (2007) Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta 227:101–112PubMedCrossRefGoogle Scholar
  14. Chalmers YM, Downey MO, Krstic MP, Loveys BR, Dry PR (2010) Influence of sustained deficit irrigation on colour parameters of Cabernet Sauvignon and Shiraz microscale wine fermentations. Aust J Grape Wine Res 16:301–313CrossRefGoogle Scholar
  15. Chaves MM, Zarrouk O, Francisco R, Costa JM, Santos T, Regalado AP, Rodrigues ML, Lopes CM (2010) Grapevine under deficit irrigation: hints from physiological and molecular data. Ann Bot 105:661–676PubMedCrossRefGoogle Scholar
  16. Chervin C, El-Kereamy A, Roustan J, Latche A, Lamon J, Bouzayen M (2004) Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit. Plant Sci 167:1301–1305CrossRefGoogle Scholar
  17. Chervin C, Tira-umphon A, Terrier N, Zouine M, Severac D, Roustan JP (2008) Stimulation of the grape berry expansion by ethylene and effects on related gene transcripts, over the ripening phase. Physiol Plant 134:534–546PubMedCrossRefGoogle Scholar
  18. Coelho AF, Gomes EP, Soussa AP, Glória MBA (2005) Effect of irrigation level on yield and bioactive amine content of American lettuce. J Sci Food Agric 85:1026–1032CrossRefGoogle Scholar
  19. Coombe BG (1995) Adoption of a system for identifying grapevine growth stages. Aust J Grape Wine Res 1:104–110CrossRefGoogle Scholar
  20. Davies C, Böttcher C (2009) Hormonal control of grape berry ripening. In: Roubelakis-Angelakis KA (ed) Grapevine molecular physiology and biotechnology. Springer, New York, pp 229–261CrossRefGoogle Scholar
  21. Deluc LG, Grimplet J, Wheatley MD, Tillett RL, Quilici DR, Osborne C, Schooley DA, Schlauch KA, Cushman JC, Cramer GR (2007) Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genomics 8:429PubMedCrossRefGoogle Scholar
  22. Deluc LG, Quilici DR, Decendit A, Grimplet J, Wheatley D, Schlauch A, Mérillon JM, Cushman JC, Cramer GR (2009) Water deficit alters differentially metabolic pathways affecting important flavour and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genomics 10:212PubMedCrossRefGoogle Scholar
  23. Deytieux-Belleau C, Gagné S, L’Hyvernay A, Donèche B, Gény L (2007) Possible roles of both abscisic acid and indole–acetic acid in controlling grape berry ripening process. J Int Sci Vigne Vin 41:141–148Google Scholar
  24. Deytieux-Belleau C, Vallet A, Donèche B, Gény L (2008) Pectin methylesterase and polygalacturonase in the developing grape skin. Plant Physiol Biochem 46:638–646PubMedCrossRefGoogle Scholar
  25. Downey MO, Dokoozlian NK, Krstic MP (2006) Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: a review of recent research. Am J Enol Vitic 57:257–268Google Scholar
  26. Durgbanshi A, Arbona V, Pozo O, Miersch O, Sancho JV, Gómez-Cadenas A (2005) Simultaneous determination of multiple phytohormones in plant extracts by liquid chromatography-electrospray tandem mass spectrometry. J Agric Food Chem 53:8437–8442PubMedCrossRefGoogle Scholar
  27. El-Kereamy A, Chervin C, Roustan JP, Cheynier V, Souquet JM, Moutounet M, Raynal J, Ford C, Latché A, Pech JC, Bouzayen M (2003) Exogenous ethylene stimulates the long-term expression of genes related to anthocyanin biosynthesis in grape berries. Physiol Plant 119:175–182CrossRefGoogle Scholar
  28. Esteban MA, Villanueva MJ, Lissarrague JR (2001) Effect of irrigation on changes in the anthocyanin composition of the skin of cv. Tempranillo (Vitis vinifera L.) grape berries during ripening. J Sci Food Agric 81:409–420CrossRefGoogle Scholar
  29. Etchebarne F, Ojeda H, Hunter JJ (2010) Leaf: fruit ratio and vine water status effects on grenache noir (Vitis vinifera L.) berry composition: water, sugar, organic acids and cations. S Afr J Enol Vitic 31:106–115Google Scholar
  30. Fernández O, Martínez O, Hernández Z, Guadalupe Z, Ayestarán B (2011) Effect of the presence of lysated lees on polysaccharides, color and main phenolic compounds of red wine during barrel ageing. Food Res Int 44:84–91CrossRefGoogle Scholar
  31. Gagné S, Cluzet S, Mérillon JM, Gény L (2011) ABA initiates anthocyanin production in grape cell cultures. J Plant Growth Regul 30:1–10CrossRefGoogle Scholar
  32. Ghisi R, Jannini B, Passera C (1984) Changes in the activities of enzymes involved in nitrogen and sulphur assimilation during leaf and berry development of Vitis vinifera. Vitis 23:257–267Google Scholar
  33. Girona J, Marsal J, Mata M, del Campo J, Basile B (2009) Phenological sensitivity of berry growth and quality of “Tempranillo” grapevines (Vitis vinífera L.) to water stress. Aust J Grape Wine Res 15:268–277CrossRefGoogle Scholar
  34. Gómez-Alonso S, Hermosín I, García-Romero E (2007) Simultaneous HPLC analysis of biogenic amines, amino acids and ammonium ion as aminoenones derivatives in wine and beer samples. J Agric Food Chem 55:608–613PubMedCrossRefGoogle Scholar
  35. Grimplet J, Wheatley MD, Ben Jouira H, Deluc LG, Cramer GR, Cushman JC (2009) Proteomic and selected metabolite analysis of grape berry tissues under well watered and water-deficit stress conditions. Proteomics 9:2503–2528PubMedCrossRefGoogle Scholar
  36. Guadalupe Z, Ayestarán B (2008) Changes in the color components and phenolic content of red wines from Vitis vinifera L. cv. “Tempranillo” during vinification and aging. Eur Food Res Technol 228:29–38CrossRefGoogle Scholar
  37. Guadalupe Z, Soldevilla A, Sánez-Navajas MP, Ayestarán B (2006) Analysis of polymeric phenolics in red wines using different techniques combined with gel permeation chromatography fractionation. J Chromatogr 1112:112–120CrossRefGoogle Scholar
  38. Herbert P, Cabrita MJ, Ratola N, Laureano O, Alves A (2005) Free amino acids and biogenic amines in wines and musts from the Alentejo region. Evolution of amines during alcoholic fermentation and relationship with variety, subregion, and vintage. J Food Eng 66:315–322CrossRefGoogle Scholar
  39. Hernández-Orte P, Ibraz MJ, Cacho J, Ferriera V (2003) Amino acid determination in grape juices and wines by HPLC using a modification of the 6-aminoquinolyl-n-hydroxysuccinimidyl carbamate (AQC) method. Chromatographia 58:29–35Google Scholar
  40. Hilbert G, Soyer J-P, Molot C, Giraudon J, Milin S, Gaudillère J-P (2003) Effects of nitrogen supply on must quality and anthocyanin accumulation in berries of cv. Merlot. Vitis 42:69–76Google Scholar
  41. Iland P, Bruer N, Edwards G, Weeks S, Wilkes E (2004) Chemical analysis of grapes and wine techniques and concepts. Patrick Iland wine promotions, CampelltownGoogle Scholar
  42. Intrigliolo DS, Castel JR (2010) Response of grapevine cv. Tempranillo to timing and amount of irrigation: water relations, vine growth, yield and berry and wine composition. Irrigation Sci 28:113–125CrossRefGoogle Scholar
  43. Jeong ST, Goto-Yamamoto N, Kobayashi S, Esaka M (2004) Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Sci 167:247–252CrossRefGoogle Scholar
  44. Keller M (2005) Deficit irrigation and vine mineral nutrition. Am J Enol Vitic 56:267–283Google Scholar
  45. Kennedy JA, Jones GP (2001) Analysis of proanthocyanidin cleavage products following acid-catalysis in the presence of excess phloroglucinol. J Agric Food Chem 49:1740–1746PubMedCrossRefGoogle Scholar
  46. Kennedy JA, Matthews MA, Waterhouse AL (2002) Effect of maturity and vine water status on grape skin and wine flavonoids. Am J Enol Vitic 53:268–274Google Scholar
  47. Klessig DF, Malamy J (1994) The salicylic acid signal in plants. Plant Mol Biol 26:1439–1458PubMedCrossRefGoogle Scholar
  48. Kondo S, Fukuda K (2001) Changes of jasmonates in grape berries and their possible roles in fruit development. Sci Hortic (Amsterdam) 91:275–288CrossRefGoogle Scholar
  49. Kraeva E, Andary C, Carbonneau A, Deloire A (1998) Salicylic acid treatment of grape berries retards ripening. Vitis 37:143–144Google Scholar
  50. Lacampagne S, Gagné S, Gény L (2010) Involvement of abscisic acid in controlling the proanthocyanidin biosynthesis pathway in grape skin: new elements regarding the regulation of tannin composition and leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR) activities and expression. J Plant Growth Regul 29:81–90CrossRefGoogle Scholar
  51. Lebon G, Brun O, Magné C, Clément C (2005) Photosynthesis of the grapevine (Vitis vinifera) inflorescence. Tree Physiol 25:633–639PubMedCrossRefGoogle Scholar
  52. Lebon G, Wojnarowiez G, Holzapfel B, Fontaine F, Vaillant-Gaveau N, Clément C (2008) Sugars and flowering in the grapevine (Vitis vinifera L.). J Exp Bot 59:2565–2578PubMedCrossRefGoogle Scholar
  53. Loulakakis KA, Roubelakis-Angelakis KA (2000) Enzymes of ammonia assimilation in Vitis vinifera. Acta Hortic 526:209–223Google Scholar
  54. Loulakakis KA, Morot-Gaudry JF, Velanis CN, Skopelitis DS, Moschou PN, Hirel B, Roubelakis-Angelakis KA (2009) Advancements in nitrogen metabolism in grapevine. In: Roubelakis-Angelakis KA (ed) Grapevine molecular physiology and biotechnology. Springer, New York, pp 161–205CrossRefGoogle Scholar
  55. McCarthy MG (2000) Developmental variation in sensitivity of Vitis vinifera L. (Shiraz) berries to soil water deficit. Aust J Grape Wine Res 6:136–140CrossRefGoogle Scholar
  56. Montoliú A, López-Climent MF, Arbona V, Pérez-Clemente RM, Gómez-Cadenas A (2009) A novel in vitro tissue culture approach to study salt stress responses in citrus. Plant Growth Regul 59:179–187CrossRefGoogle Scholar
  57. Mullins MG (1966) Test-plants for investigations of the physiology of fruiting in Vitis vinifera L. Nature 209:419–420CrossRefGoogle Scholar
  58. Ollat N, Geny L, Soyer JP (1998) Les boutures fructifères de vigne: validation d’un modèle d’étude de la physiologie de la vigne. I. Principales caractéristiques de l’appareil végétatif. J Int Sci Vigne Vin 32:1–9Google Scholar
  59. Ollé D, Guiraud JL, Souquet JM, Terrier N, Ageorges A, Cheynier V, Verries C (2011) Effect of pre- and post-veraison water deficit on proanthocyanidin and anthocyanin accumulation during Shiraz berry development. Aust J Grape Wine Res 17:90–100CrossRefGoogle Scholar
  60. Peña-Cortés H, Barrios P, Dorta F, Polanco V, Sánchez C, Sánchez E, Ramírez I (2005) Involvement of jasmonic acid and derivatives in plant responses to pathogens and insects and in fruit ripening. J Plant Growth Regul 23:246–260Google Scholar
  61. Ribéreau-Gayon J, Peynaud E, Sudraud P, Ribéreau-Gayon P (1972) Traité d’Enologie sciences et techniques du tin Analyse et control des vins, vol Tome I. Dunod, ParisGoogle Scholar
  62. Roby G, Matthews MA (2004) Relative proportions of seed, skin and flesh, in ripe berries from Cabernet Sauvignon grapevines grown in a vineyard either well irrigated or under water deficit. Aust J Grape Wine Res 10:74–82CrossRefGoogle Scholar
  63. Salazar-Parra C, Aguirreolea J, Sánchez-Díaz M, Irigoyen JJ, Morales F (2010) Effects of climate changes scenarios on Tempranillo grapevine (Vitis vinifera L.) ripening: response to a combination of elevated CO2 and temperature, and moderate drought. Plant Soil 337:179–191CrossRefGoogle Scholar
  64. Salazar-Parra C, Aguirreolea J, Sánchez-Díaz M, Irigoyen JJ, Morales F (2012a) Climate change (elevated CO2, elevated temperature and moderate drought) triggers the antioxidant enzymes’ response of grapevine cv. Tempranillo, avoiding oxidative damage. Physiol Plant 144:99–110PubMedCrossRefGoogle Scholar
  65. Salazar-Parra C, Aguirreolea J, Sánchez-Díaz M, Irigoyen JJ, Morales F (2012b) Photosynthetic response of Tempranillo grapevine to climate change scenarios. Ann Appl Biol 161:277–292CrossRefGoogle Scholar
  66. Santesteban LG, Royo JB (2006) Water status, leaf area and fruit load influence on berry weight and sugar accumulation of cv. ‘Tempranillo’ under semiarid conditions. Sci Hortic 109:60–65CrossRefGoogle Scholar
  67. Smart R, Robinson M (2006) Sunlight into wine: a handbook for winegrape canopy management. Winetittles Pty. Ltd., AdelaideGoogle Scholar
  68. Stines AP, Grubb J, Gockowiak H, Henschke PA, Høj PB, van Heeswijck R (2000) Proline and arginine accumulation in developing berries of Vitis vinifera L. in Australian vineyards: Influence of vine cultivar, berry maturity and tissue type. Aust J Grape Wine Res 6:150–158CrossRefGoogle Scholar
  69. Symons G, Davies C, Shavrukov Y, Dry I, Reid J, Thomas M (2006) Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiol 140:150–158PubMedCrossRefGoogle Scholar
  70. Treeby M, Holzapfel BP, Walker RR, Nicholas PR (1998) Profiles of free amino acids in grapes of grafted Chardonnay grapevines. Aust J Grape Wine Res 4:121–126CrossRefGoogle Scholar
  71. Wen PF, Chen JY, Kong WF, Pan QH, Wan SB, Huang WD (2005) Salicylic acid induced the expression of phenylalanine ammonia-lyase gene in grape berry. Plant Sci 169:928–934CrossRefGoogle Scholar
  72. Wheeler S, Loveys B, Ford C, Davies C (2009) The relationship between the expression of abscisic acid biosynthesis genes, accumulation of abscisic acid and the promotion of Vitis vinifera L. berry ripening by abscisic acid. Aust J Grape Wine Res 15:195–204CrossRefGoogle Scholar
  73. Zhang XR, Luo GG, Wang RH, Wang J, Himelrick DG (2003) Growth and developmental responses of seeded and seedless grape berries to shoot girdling. J Am Soc Hortic Sci 128:316–323Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • María Niculcea
    • 1
  • Leticia Martinez-Lapuente
    • 2
  • Zenaida Guadalupe
    • 2
  • Manuel Sánchez-Díaz
    • 1
  • Fermín Morales
    • 1
    • 3
  • Belén Ayestarán
    • 2
  • M. Carmen Antolín
    • 1
    Email author
  1. 1.Departamento de Biología Vegetal, Sección Biología Vegetal, Unidad Asociada al CSIC (EEAD, Zaragoza; ICVV, Logroño), Facultades de Ciencias y FarmaciaUniversidad de NavarraPamplonaSpain
  2. 2.Instituto de Ciencias de la Vid y del VinoUniversidad de La Rioja, Gobierno de La Rioja y CSICLogroñoSpain
  3. 3.Departamento de Nutrición VegetalEstación Experimental de Aula Dei (EEAD), CSICZaragozaSpain

Personalised recommendations