Journal of Plant Growth Regulation

, Volume 30, Issue 2, pp 199–212 | Cite as

Cloning, Localization, and Expression Analysis of a New Tonoplast Monosaccharide Transporter from Vitis vinifera L

  • Lei Zeng
  • Zeng Wang
  • Alexander Vainstein
  • Shangwu Chen
  • Huiqin Ma


Tonoplast sugar transporters are important for sugar partitioning, immobilization, and accumulation during fruit development and ripening. Here we report the cloning, localization, and functional analysis of one of these transporters in grape berries (Vitis vinifera L.). This clone, named VvTMT1, encodes a 742-aa protein with a calculated molecular mass of 80.2 kDa. Predicted membrane topology and phylogenetic analysis suggest that VvTMT1 belongs to the major facilitator superfamily of membrane carriers. Semiquantitative RT-PCR suggests that VvTMT1 is a sink-specific transporter, whose expression decreases with berry development. Heterologous expression of VvTMT1 in yeast can partially restore growth of the hxt-null strain in glucose and other monosaccharide media, indicating that VvTMT1 is a functional monosaccharide transporter. Induction of VvTMT1-GFP fusion protein expression in transgenic yeast revealed its tonoplast localization. The subcellular localization of VvTMT1 in plants was shown by immunogold labeling of grape berry mesocarp cells and VvTMT1-GFP transient expression in tobacco epidermis cells. Based on the above analyses of VvTMT1, this is the first report of a functional tonoplast-localized monosaccharide transporter in grapevine.


Grape berry Immunogold electron microscopy Subcellular localization Tonoplast Tonoplast monosaccharide transporter Vacuole Vitis vinifera



This work was financially supported by the National Natural Science Foundation of China (30471212 and 30500347). We are grateful to Prof. Dr. Doris Rentsch (University of Bern, Switzerland) for the gift of the pDR195 vector, to Prof. Dr. Eckhard Boles (University of Frankfurt, Germany) for providing the S. cerevisiae strain EBY.VW4000, and to Dr. Camille Vainstein for language proof reading.

Supplementary material

344_2010_9185_MOESM1_ESM.doc (248 kb)
Supplementary material 1 (DOC 248 kb)


  1. Agasse A, Vignault C, Kappel C, Conde C, Gerós H, Delrot S (2009) Sugar transport and sugar sensing in grape. In: Roubelakis-Angelakis KA (ed) Grapevine molecular physiology and biotechnology, 2nd edn. Springer, New York, pp 105–139CrossRefGoogle Scholar
  2. Ageorges A, Issaly R, Picaud S, Delrot S, Romieu C (2000) Characterization of an active sucrose transporter gene expressed during the ripening of grape berry (Vitis vinifera L.). Plant Physiol Biochem 38:177–185CrossRefGoogle Scholar
  3. Antony E, Taybi T, Courbot M, Mugford ST, Smith JAC, Borland AM (2008) Cloning, localization and expression analysis of vacuolar sugar transporters in the CAM plant Ananas comosus (pineapple). J Exp Bot 59:1895–1908PubMedCrossRefGoogle Scholar
  4. Asano T, Katagiri H, Takata K, Lin JL, Ishihara H, Inukai K, Tsukuda K, Kikuchi M, Hirano H, Yazaki Y, Oka Y (1991) The role of N-glycosylation of GLUT1 for glucose transport activity. J Biol Chem 266:24632–24636PubMedGoogle Scholar
  5. Baldwin B, Henderson P (1989) Homologies between sugar transporters from eukaryotes and prokaryotes. Annu Rev Physiol 51:459–471PubMedCrossRefGoogle Scholar
  6. Batoko H, Zheng H-Q, Hawes C, Moore I (2000) A Rab1 GTPase is required for transport between the endoplasmic reticulum and Golgi apparatus and for normal Golgi movement in plants. Plant Cell 12:2201–2218PubMedCrossRefGoogle Scholar
  7. Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795PubMedCrossRefGoogle Scholar
  8. Büttner M, Sauer N (2000) Monosaccharide transporters in plants: structure, function and physiology. Biochim Biophys Acta 1465:263–274PubMedCrossRefGoogle Scholar
  9. Carter C, Pan S, Zouhar J, Avila EL, Girke T, Raikhel NV (2004) The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unpredicted proteins. Plant Cell 16:3285–3303PubMedCrossRefGoogle Scholar
  10. Chiou TJ, Bush DR (1996) Molecular cloning, immunochemical localization to the vacuole, and expression in transgenic yeast and tobacco of a putative sugar transporter from sugar beet. Plant Physiol 110:511–520PubMedCrossRefGoogle Scholar
  11. Conde C, Agasse A, Silva P, Lemoine R, Delrot S, Tavares R, Gerós H (2007) OeMST2 encodes a monosaccharide transporter expressed throughout olive fruit maturation. Plant Cell Physiol 48:1299–1308PubMedCrossRefGoogle Scholar
  12. Davies C, Robinson SP (1996) Sugar accumulation in grape berries—cloning of two putative vacuolar invertase cDNAs and their expression in grapevine tissues. Plant Physiol 111:275–283PubMedCrossRefGoogle Scholar
  13. Davies C, Wolf T, Robinson SP (1999) Three putative sucrose transporters are differentially expressed in grapevine tissues. Plant Sci 147:93–100CrossRefGoogle Scholar
  14. Endler A, Meyer S, Schelbert S, Schneider T, Weschke W, Peters SW, Keller F, Baginsky S, Martinoia E, Schmidt UG (2006) Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach. Plant Physiol 141:196–207PubMedCrossRefGoogle Scholar
  15. Fillion L, Ageorges A, Picaud S, Coutos-Thevenot P, Lemoine R, Romieu C, Delrot S (1999) Cloning and expression of a hexose transporter gene expressed during the ripening of grape berry. Plant Physiol 120:1083–1094PubMedCrossRefGoogle Scholar
  16. Frommer WB, Ninnemann O (1995) Heterologous expression of genes in bacteria, fungal, animal, and plant cells. Ann Rev Plant Physiol Plant Mol Biol 46:419–444CrossRefGoogle Scholar
  17. Gal S, Raikhel NV (1994) A carboxy-terminal plant vacuolar targeting signal is not recognized by yeast. Plant J 6:235–240PubMedCrossRefGoogle Scholar
  18. Gietz D, Jean AS, Woods RA, Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425PubMedCrossRefGoogle Scholar
  19. Gottwald JR, Krysan PJ, Young JC, Evert RF, Sussman MR (2000) Genetic evidence for the in planta role of phloem-specific plasma membrane sucrose transporters. Proc Natl Acad Sci U S A 97:13979–13984PubMedCrossRefGoogle Scholar
  20. Griffith JK, Baker ME, Rouch DA, Page MGP, Skurray RA, Paulsen IT, Chater KF, Baldwin SA, Henderson PJF (1992) Membrane transport proteins: implications of sequence comparisons. Curr Opin Cell Biol 4:684–695PubMedCrossRefGoogle Scholar
  21. Hayes MA, Davies C, Dry IB (2007) Isolation, functional characterization, and expression analysis of grapevine (Vitis vinifera L.) hexose transporters: differential roles in sink and source tissues. J Exp Bot 58:1985–1997PubMedCrossRefGoogle Scholar
  22. Henderson PJ, Baldwin SA, Cairns MT, Charalambous BM, Dent HC, Gunn F, Liang WJ, Lucas VA, Martin GE, McDonald TP, McKeown BJ, Muiry JAR, Petro KR, Rooberts PE, Shatwell KP, Smith G, Tate CG (1992) Sugar-cation symport systems in bacteria. Int Rev Cytol 137A:149–208CrossRefGoogle Scholar
  23. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pè ME, Valle G, Morgante M, Caboche M, Adam-Blondon A-F, Weissenbach J, Quétier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–468PubMedCrossRefGoogle Scholar
  24. Jaquinod M, Villiers F, Kieffer-Jaquinod S, Hugouvieux V, Bruley C, Garin J, Bourguignon J (2007) A proteomic dissection of Arabidopsis thaliana vacuoles isolated from cell culture. Mol Cell Proteomics 6:394–412PubMedGoogle Scholar
  25. Koch KE (1996) Carbohydrate modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 47:509–540PubMedCrossRefGoogle Scholar
  26. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a Hidden Markov Model: application to complete genomes. J Mol Biol 305:567–580PubMedCrossRefGoogle Scholar
  27. Lalonde S, Boles E, Hellmann H, Barker L, Patrick JW, Frommer WB, Ward JM (1999) The dual function of sugar carriers: transport and sugar sensing. Plant Cell 11:707–726PubMedCrossRefGoogle Scholar
  28. Lemoine (2000) Sucrose transporters in plants: update on function and structure. Biochim Biophys Acta 1465:246–262PubMedCrossRefGoogle Scholar
  29. Maiden M, Davis EO, Baldwin S, Moore D, Henderson P (1987) Mammalian and bacterial sugar porters are homologous. Nature 325:641–643PubMedCrossRefGoogle Scholar
  30. Manning K, Davies C, Bowen HC, White PJ (2001) Functional characterization of two ripening-related sucrose transporters from grape berries. Ann Bot 87:125–129CrossRefGoogle Scholar
  31. Marger MD, Saier MH (1993) A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem Sci 18:13–20PubMedCrossRefGoogle Scholar
  32. Reinders A, Sivitz AB, Starker CG (2008) Functional analysis of LjSUT4, a vacuolar sucrose transporter from Lotus japonicus. Plant Mol Biol 68:289–299PubMedCrossRefGoogle Scholar
  33. Reisen D, Marty F, Leborgne-Castel N (2005) New insights into the tonoplast architecture of plant vacuoles and vacuolar dynamics during osmotic stress. BMC Plant Biol 5:13PubMedCrossRefGoogle Scholar
  34. Rentsch D, Laloi M, Rouhara I, Scmelzer E, Delrot S, Frommer WB (1995) NTR1 encodes a high affinity oligopeptide transporter in Arabidopsis. FEBS Lett 370:264–268PubMedCrossRefGoogle Scholar
  35. Riesmeier JW, Hirner B, Frommer WB (1993) Potato sucrose transporter expression in minor veins indicates a role in phloem loading. Plant Cell 5:1591–1598PubMedCrossRefGoogle Scholar
  36. Robinson SP, Davies C (2000) Molecular biology of grape berry ripening. Aust J Grape Wine Res 6:175–188CrossRefGoogle Scholar
  37. Sambrook J, Fittsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  38. Sauer N (2007) Molecular physiology of higher plant sucrose transporters. FEBS Lett 581:2309–2317PubMedCrossRefGoogle Scholar
  39. Schmidt UG, Endler A, Schelbert S, Brunner A, Schnell M, Neuhaus HE, Marty-Mazars D, Marty F, Baginsky S, Martinoia E (2007) Novel tonoplast transporters identified using a proteomic approach with vacuoles isolated from cauliflower buds. Plant Physiol 145:216–229PubMedCrossRefGoogle Scholar
  40. Schneider S, Beyhl D, Hedrich R, Sauer N (2008) Functional and physiological characterization of Arabidopsis inositol transporter1, a novel tonoplast-localized transporter for myo-inositol. Plant Cell 20:1073–1087PubMedCrossRefGoogle Scholar
  41. Shimaoka T, Ohnishi M, Sazuka T, Mitsuhashi N, Hara-Nishimura I, Shimazaki K, Maeshima M, Yokota A, Tomizawa K, Mimura T (2004) Isolation of intact vacuoles and proteomic analysis of tonoplast from suspension-cultured cells of Arabidopsis thaliana. Plant Cell Physiol 45:672–683PubMedCrossRefGoogle Scholar
  42. Sivitz AB, Reinders A, Johnson ME, Krentz AD, Grof CPL, Perroux JM, Ward JM (2007) Arabidopsis Sucrose Transporter AtSUC9. High-affinity transport activity, intragenic control of expression, and early flowering mutant phenotype. Plant Physiol 143:188–198PubMedCrossRefGoogle Scholar
  43. Stadler R, Truernit E, Gahrtz M, Sauer N (1999) The AtSUC1 sucrose carrier may represent the osmotic driving force for anther dehiscence and pollen tube growth in Arabidopsis. Plant J 19:269–278PubMedCrossRefGoogle Scholar
  44. Szponarski W, Sommerer N, Boyer JC, Rossignol M, Gibart R (2004) Large-scale characterization of integral proteins from Arabidopsis vacuolar membrane by two-dimensional liquid chromatography. Proteomics 4:397–406PubMedCrossRefGoogle Scholar
  45. Taylor CB (1997) Promoter fusion analysis: an insufficient measure of gene expression. Plant Cell 9:273–275CrossRefGoogle Scholar
  46. Terrier N, Glissant D, Grimplet J, Barrieu F, Abbal P, Couture C, Ageorges A, Atanassova R, Léon C, Renaudin JP, Dédaldechamp F, Romieu C, Delrot S, Hamdi S (2005) Isogene specific oligo arrays reveal multifaceted changes in gene expression during grape berry (Vitis vinifera L.) development. Planta 222:832–847PubMedCrossRefGoogle Scholar
  47. Vignault C, Vachaud M, Cakir B, Glissant D, Dedaldechamp F, Buttner M, Atanassova R, Fleurat-Lessard P, Lemoine R, Delrot S (2005) VvHT1 encodes a monosaccharide transporter expressed in the conducting complex of the grape berry phloem. J Exp Bot 56:1409–1418PubMedCrossRefGoogle Scholar
  48. Wieczorke R, Krampe S, Weierstall T, Freidel K, Hollenberg CP, Boles E (1999) Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett 464:123–128PubMedCrossRefGoogle Scholar
  49. Williams L, Lemoine R, Sauer N (2000) Sugar transporters in higher plants: a diversity of roles and complex regulation. Trends Plant Sci 5:283–290PubMedCrossRefGoogle Scholar
  50. Wormit A, Trentmann O, Feifer I, Lohr C, Tjaden J, Meyer S, Schmidt U, Martinoia E, Neuhaus HE (2006) Molecular identification and physiological characterization of a novel monosaccharide transporter from Arabidopsis involved in vacuolar sugar transport. Plant Cell 18:3476–3490PubMedCrossRefGoogle Scholar
  51. Zhang DP, Lu YM, Wang YZ, Duan CQ, Yan HY (2001) Acid invertase is predominantly localized to cell walls of both the practically symplasmically isolated element/companion cell complex and parenchyma cells in developing apple fruits. Plant Cell Environ 24:691–702CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Key Lab of Functional Dairy Science of Chinese Ministry of Education and Municipal Government of Beijing, College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
  2. 2.College of Agriculture and BiotechnologyChina Agricultural UniversityBeijingChina
  3. 3.The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael

Personalised recommendations