Hormonal Modulation of Citrus Responses to Flooding



In this work, variations in endogenous levels of several hormones were measured in citrus under conditions of continuous flooding following a time-course design. The use of three genotypes differing in their ability to tolerate waterlogging has allowed the discrimination between common and specific hormonal responses. Data suggest an essential involvement of the aerial part in the regulation of tolerance to flooding, whereas in roots more general responses were detected. The progressive increase in leaf abscisic acid (ABA) correlating with the different tolerance of genotypes confirms the involvement of this hormone in plant responses to stress. The late increase in 1-aminocyclopropane-1-carboxylic acid, concomitant with severe leaf injury, points to ethylene as a promoter of leaf senescence in citrus. Leaf putrescine increased in all flooded genotypes, suggesting a general protective role, whereas a higher protective ability of spermidine and spermine was enforced by their exclusive accumulation in the sensitive genotype. Leaf jasmonic acid (JA) increased rapidly and transiently under flooding, suggesting a role for this hormone in triggering downstream responses. In stressed roots, while indole-3-acetic acid increased, JA and ABA levels rapidly decreased to reach almost complete depletion in all flooded citrus genotypes. This suggests that not only should the increase in the so-called stress hormones be considered a signal but also their reduction. The results contribute to the understanding of the intricate set of connections between plant hormones that regulate physiologic responses to stress.


Abscisic acid 1-Aminocyclopropane-1-carboxylic acid Indole-3-acetic acid Jasmonic acid Putrescine Spermidine Spermine Waterlogging 

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Departmento de Ciències Agràries i del Medi Natural Universitat Jaume ICastelló de la PlanaSpain

Personalised recommendations