Advertisement

Journal of Plant Growth Regulation

, Volume 26, Issue 3, pp 285–289 | Cite as

Exogenous Abscisic Acid Increases Carbohydrate Accumulation and Redistribution to the Grains in Wheat Grown Under Field Conditions of Soil Water Restriction

  • Claudia Travaglia
  • Ana C. Cohen
  • Herminda Reinoso
  • Carlos Castillo
  • Rubén BottiniEmail author
Article

Abstract

This work investigates the effects of abscisic acid (ABA) on physiologic parameters related to yield in wheat (Triticum aestivum) grown under field conditions with water restriction ranging between 45.7% and 49.5% of field capacity during anthesis and postanthesis. ABA (300 mg L−1) was sprayed onto the plants at the beginning of shoot lengthening which significantly promoted leaf area and higher concentrations of chlorophylls and carotenoids in flag leaf at anthesis. ABA also increased soluble carbohydrates in shoots at anthesis, which were then re-exported to the grains at maturity. This correlated with a yield increase that was achieved by a higher number and weight of grains per spike, but protein content was not significantly affected.

Keywords

Abscisic acid Carbohydrate accumulation Grain yield Water stress Wheat 

Notes

Acknowledgments

C Travaglia is the recipient of a scholarship from CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina). This work was funded by Fundación Antorchas and CONICET (R. Bottini) and by Secyt-UNRC (H. Reinoso). The experiments described in this article comply with the current laws of Argentina.

References

  1. Brenner M, Cheikh N (1995) The role of hormones in photosynthate partitioning and seed filling. In: Davies PJ (ed), Plant hormones, physiology, biochemistry and molecular biology. Dordrecht: Kluwer Academic Publishers, pp 649–670Google Scholar
  2. Cuniberti M (2001) Condiciones ambientales y genéticas que inciden en la calidad panadera del trigo. Publicación técnica de trigo INTA Rafaela. Campaña (2001). N° 4. http://www.rafaela.inta.gov.ar/publicaciones/trigo2001
  3. Daniels L, Hanson R, Phillips J (1994) Chemical analysis. In: Gerhardt P, Murray RGE, Wood W, Krieg NR (eds), Methods for General and Molecular Bacteriology. Washington, DC: American Society of Microbiology, Chap 22Google Scholar
  4. Davies WJ, Zhang J (1991) Root signals and the regulation of growth and development of plants in drying soil. Ann Rev Plant Physiol Plant Mol Biol 42:55–76CrossRefGoogle Scholar
  5. de Bruijn S, Vreugdenbill D (1992) Abscisic acid and assimilate partitioning to develop seeds (Dose abscisic acid influence the growth rate of pea seeds?). J Plant Physiol 140:201–206Google Scholar
  6. Dewdney S, McWha J (1978) The metabolism and transport of abscisic acid during grain fill in wheat. J Exp Bot 29:1299–1308CrossRefGoogle Scholar
  7. Dewdney S, McWha J (1979) Abscisic acid and the movement of photosynthetic assimilates towards developing wheat (Triticum aestivum L.) grains. Z Pflanzenphysiol 92:183–186Google Scholar
  8. Dood IC, Davies WJ (2005) Hormones and the regulation of the water balance. In: Davies PJ (ed.), Plant Hormones. Biosynthesis, Signal Transduction, Action! Dordrecht: Kluwer Academic Publishers, pp 493–512Google Scholar
  9. Havaux M (1998) Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci 3:147–151CrossRefGoogle Scholar
  10. Ivanov A, Krol M, Maxwell D, Huner N (1995) Abscisic acid induced protection against photoinhibition of PSII correlates with enhanced activity of the xanthophylls cycle. FEBS Lett 371:61–64PubMedCrossRefGoogle Scholar
  11. Jones R, Brenner M (1987) Distribution of abscisic acid in maize kernel during grain filling. Plant Physiol 83:905–909PubMedGoogle Scholar
  12. Mansfield TA, Hetherington AH, Atkinson CJ (1990) Some current aspects of stomatal physiology. Annu Rev Plant Physiol Plant Mol Biol 41:55–75CrossRefGoogle Scholar
  13. Munné-Bosch S, Alegre L (2002) The function of tocopherols and tocotrienols in plants. Crit Rev Plant Sci 21:31–57Google Scholar
  14. Ober E, Setter T (1990) Timing of kernel development in water stressed maize: Water potential and abscisic acid accumulation. Ann Bot 66:665–672Google Scholar
  15. Sansberro P, Mroginski L, Bottini R (2004) Abscisic acid promotes growth of Ilex paraguariensis plants by alleviating diurnal water stress. Plant Growth Regul 42:105–111CrossRefGoogle Scholar
  16. Schussler JR, Brenner ML, Brun WA (1984) Abscisic acid and its relationship to seed filling in soybeans. Plant Physiol 76:301–306PubMedGoogle Scholar
  17. Schussler JR, Brenner ML, Brun W (1991) Relationship of endogenous abscisic acid to sucrose level and seed growth rate of soybeans. Plant Physiol 96:1308–1313PubMedCrossRefGoogle Scholar
  18. Sharp R, LeNoble M (2002) ABA, ethylene and the control of shoot and root growth under water stress. J Exp Bot 53:33–37PubMedCrossRefGoogle Scholar
  19. Thomas B, Howarth C (2000) Five ways to stay green. J Exp Bot 51:329–337PubMedCrossRefGoogle Scholar
  20. Tietz A, Ludwing M, Dingkuhn M, Dorffling K (1981) Effect of abscisic acid on the transport of assimilates in barley. Planta 152:557–561CrossRefGoogle Scholar
  21. Wang TL, Cook SK, Francis RJ, Ambrose MJ, Hedley CL (1987) An analysis of seed development in Pisum sativum. VI. Abscisic acid accumulation. J Exp Bot 38:1921–1932CrossRefGoogle Scholar
  22. Yang J, Wang Z, Zhu Q, Su B (1999) Regulation of ABA and GA to the grain filling of rice. Acta Agron Sinica 25:341–348Google Scholar
  23. Yang J, Zhang J, Huang Z, Zhu Q, Wang L (2000) Remobilization of carbon reserves is improved by controlled soil-drying during grain filling of wheat. Crop Sci 40:1645–1655CrossRefGoogle Scholar
  24. Yang J, Zhang J, Wang Z, Zhu Q, Liu L (2001) Water deficit induced senescence and its relationship to the removilization of pre-stored carbon in wheat during grain filling. Agron J 93:196–206CrossRefGoogle Scholar
  25. Yang J, Zhang J, Wang Z, Zhu Q (2003a) Hormones in the grains in relation to sink strength and postanthesis development of spikelets in rice. Plant Growth Regul 41:185–195CrossRefGoogle Scholar
  26. Yang J, Zhang J, Wang Z, Zhu Q, Liu L (2003b) Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling. Field Crops Res 81:60–81CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Claudia Travaglia
    • 1
  • Ana C. Cohen
    • 3
  • Herminda Reinoso
    • 1
  • Carlos Castillo
    • 2
  • Rubén Bottini
    • 3
    • 4
    Email author
  1. 1.Departamento de Ciencias Naturales, Facultad de Ciencias ExactasFísicoQuímicas y Naturales, Universidad Nacional de Río CuartoRío CuartoArgentina
  2. 2.Área de Producción de Cereales, Facultad de Agronomía y VeterinariaUniversidad Nacional de Río CuartoRío CuartoArgentina
  3. 3.Cátedra de Química Orgánica y Biológica, Facultad de Ciencias AgrariasUniversidad Nacional de Cuyo, Centro UniversitarioMendozaArgentina
  4. 4.Facultad de Ciencias AgrariasChacras de CoriaArgentina

Personalised recommendations