Journal of Plant Growth Regulation

, Volume 26, Issue 2, pp 92–105 | Cite as

Regulation of Ethylene Biosynthesis

  • Cristiana T. Argueso
  • Maureen Hansen
  • Joseph J. Kieber


The biosynthesis of the gaseous phytohormone ethylene is a highly regulated process. A major point of regulation occurs at the generally rate-limiting step in biosynthesis, catalyzed by the enzyme ACC synthase (ACS). ACS is encoded by a multigene family, and different members show distinct patterns of expression during growth and development, and in response to various external cues. In addition to this transcriptional control, the stability of the ACS protein is also highly regulated. Here we review these two distinct regulatory inputs that control the spatial and temporal patterns of ethylene biosynthesis.


Ethylene biosynthesis ACC synthase Protein stability Transcription 


  1. Abel S, Nguyen MD, Chow W, Theologis A. 1995. ACS4, a primary indoleacetic acid-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis thaliana. J Biol Chem 270:19093–19099PubMedCrossRefGoogle Scholar
  2. Abel S, Oeller PW, Theologis A. 1994. Early auxin-induced genes encode short-lived nuclear proteins. Proc Natl Acad Sci USA 91:326–330PubMedCrossRefGoogle Scholar
  3. Abeles FB, Morgan PW, Saltveit ME Jr. 1992. Ethylene in Plant Biology. San Diego, CA, USA, Academic Press, Inc.Google Scholar
  4. Adams DO, Yang SF. 1979. Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci USA 76:170–174PubMedCrossRefGoogle Scholar
  5. Alexander FW, Sandmeier E, Mehta PK, Chreisten P. 1994. Evolutionary relationships between pyrodoxal-5’-phosphate-dependent enzymes. Eur J Biochem 219:953–960PubMedCrossRefGoogle Scholar
  6. Alexander L, Grierson D. 2002. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot 53:2039–2055PubMedCrossRefGoogle Scholar
  7. Apelbaum A, Burgoon AC, Anderson JD, Lieberman M. 1981. Some characteristics of the system converting 1-aminocyclopropane-1-carboxylic acid to ethylene. Plant Physiol 67:80–84PubMedGoogle Scholar
  8. Arteca J, Arteca R. 1999. A multi-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase (ACS6) in mature Arabidopsis leaves. Plant Mol Biol 39:209–219PubMedCrossRefGoogle Scholar
  9. Barry CS, Llop-Tous MI, Grierson D. 2000. The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiol 123:979–986PubMedCrossRefGoogle Scholar
  10. Beltrano J, Ronco MG, Montaldi ER. 1999. Drought stress syndrome in wheat is provoked by ethylene evolution imbalance and reversed by rewatering, aminoethoxyvinylglycine, or sodium benzoate. J Plant Growth Regul 18:59–64PubMedCrossRefGoogle Scholar
  11. Bleecker AB, Kende H. 2000. Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18PubMedCrossRefGoogle Scholar
  12. Boller T. 1984. Superinduction of ACC synthase in tomato pericarp by lithium ions. In Y. Fuchs E. Chalutz, editors, Ethylene: Biochemical, Physiological and Applied Aspects. The Hague, The Netherlands, Junk Publishers, p 87–88Google Scholar
  13. Boller T. 1991. Ethylene in pathogenesis and disease resistance. In A. K. Mattoo J. C. Suttle, editors, The Plant Hormone Ethylene. Boca Raton, FL, USA, CRC Press, p. 293–314Google Scholar
  14. Bostick M, Lochhead SR, Honda A, Palmer S, Callis J. 2004. Related to ubiquitin 1 and 2 are redundant and essential and regulate vegetative growth, auxin signaling, and ethylene production in Arabidopsis. Plant Cell 16:2418–2432PubMedCrossRefGoogle Scholar
  15. Cao WH, Liu J, Zhou QY, Cao YR, Zheng SF, et al. 2006. Expression of tobacco ethylene receptor NTHK1 alters plant responses to salt stress. Plant Cell Environ 29:1210–1219PubMedCrossRefGoogle Scholar
  16. Capitani G, Hohenester E, Feng L, Storici P, Kirsch JF, et al. 1999. Structure of 1-aminocyclopropane-1-carboxylate synthase, a key enzyme in the biosynthesis of the plant hormone ethylene. J Mol Biol 294:745–756PubMedCrossRefGoogle Scholar
  17. Cary AJ, Liu W, Howell SH. 1995. Cytokinin action is coupled to ethylene in its effects on the inhibition of root and hypocotyl elongation in Arabidopsis thaliana seedlings. Plant Physiol 107:1075–1082PubMedCrossRefGoogle Scholar
  18. Chae HS, Faure F, Kieber JJ. 2003. The eto1, eto2 and eto3 mutations and cytokinin treatment elevate ethylene biosynthesis in Arabidopsis by increasing the stability of the ACS5 protein. Plant Cell 15:545–559PubMedCrossRefGoogle Scholar
  19. Chae HS, Kieber JJ. 2005. Eto Brute? The role of ACS turnover in regulating ethylene biosynthesis. Trend Plant Sci 10:291–296CrossRefGoogle Scholar
  20. Chappell J, Hahlbrock K, Boller T. 1984. Rapid induction of ethylene biosynthesis in cultured parsley cells by fungal elicitor and its relationship to the induction of phenylalanine ammonia lyase. Planta 161:475–480CrossRefGoogle Scholar
  21. Christen P, Metzler D. 1985. Transaminases. New York, NY, USA, WileyGoogle Scholar
  22. Chung MC, Chou SJ, Kuang LY, Charng YY, Yang SF. 2002 Subcellular localization of 1-aminocyclopropane-1-carboxylic acid oxidase in apple fruit. Plant Cell Physiol 43:549–554PubMedCrossRefGoogle Scholar
  23. Cohn JR, Martin GB. 2005. Pseudomonas syringae pv. tomato type III effectors AvrPto and AvrPtoB promote ethylene-dependent cell death in tomato. Plant J 44:139–154PubMedGoogle Scholar
  24. Crocker W, Knight LI. 1908. Effect of illuminating gas and ethylene upon flowering carnation. Bot Gaz 46:259–276CrossRefGoogle Scholar
  25. Dieterle M, Thomann A, Renou JP, Parmentier Y, Cognat V, et al. 2005. Molecular and functional characterization of Arabidopsis Cullin 3A. Plant J 41:386–399PubMedCrossRefGoogle Scholar
  26. Downes B, Vierstra RD. 2005. Post-translational regulation in plants employing a diverse set of polypeptide tags. Biochem Soc Trans 33:393–399PubMedCrossRefGoogle Scholar
  27. Dutta S, Biggs RH. 1991. Regulation of ethylene biosynthesis in citrus leaves infected with Xanthomonas-Campestris Pv Citri. Physiol Plant 82:225–230CrossRefGoogle Scholar
  28. Felix G, Grosskopf DG, Regenass M, Basse C, Boller T. 1991. Elicitor-induced ethylene biosynthesis in tomato cells. Characterization and use as a bioassay for elicitor action. Plant Physiol 97:19–25PubMedGoogle Scholar
  29. Felix G, Regenass M, Boller T. 2000. Sensing of osmotic pressure changes in tomato cells. Plant Physiol 124:1169–1180PubMedCrossRefGoogle Scholar
  30. Ferguson BJ, Mathesius U. 2003. Signaling interactions during nodule development. J Plant Growth Regul 22:47–72CrossRefGoogle Scholar
  31. Figueroa P, Gusmaroli G, Serino G, Habashi J, Ma L, et al. 2005. Arabidopsis has two redundant Cullin3 proteins that are essential for embryo development and that interact with RBX1 and BTB proteins to form multisubunit E3 ubiquitin ligase complexes in vivo. Plant Cell 17:1180–1195PubMedCrossRefGoogle Scholar
  32. Fukuda H, Ogawa T, Tanase S. 1993. Ethylene production by microorganisms. Adv Microb Physiol 35:275–306PubMedCrossRefGoogle Scholar
  33. Fukuda H, Ogawa T, Tazaki M, Nagahama K, Fujii T, et al. 1992. Two reactions are simultaneously catalyzed by a single enzyme—the arginine-dependent simultaneous formation of 2 products, ethylene and succinate, from 2-oxoglutarate by an enzyme from Pseudomonas syringae. Biochem Biophys Res Commun 188:483–489PubMedCrossRefGoogle Scholar
  34. Funke GL, DeCoeyer F, DeDecker A, Maton J. 1938. The influence of the emanation of apples on several life phenomena of plants. Biologisch Jaarboek 5:335–381Google Scholar
  35. Gingerich DJ, Gagne JM, Salter DW, Hellmann H, Estelle M, et al. 2005. Cullins 3a and 3b assemble with members of the broad complex/tramtrack/bric-a-brac (BTB) protein family to form essential ubiquitin-protein ligases (E3s) in Arabidopsis. J Biol Chem 280:18810–18821PubMedCrossRefGoogle Scholar
  36. Giovannoni J. 2001. Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Plant Mol Biol 52:725–749PubMedCrossRefGoogle Scholar
  37. Glick BR. 2005. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7PubMedCrossRefGoogle Scholar
  38. Goeschl JD, Pratt HK, Bonner BA. 1967. An effect of light on the production of ethylene and the growth of the plumular portion of etiolated pea seedlings. Plant Physiol 42:1077–1080PubMedGoogle Scholar
  39. Grbic V, Bleecker AB. 1995. Ethylene regulates the timing of leaf senescence in Arabidopsis. Plant J 8:595–602CrossRefGoogle Scholar
  40. Grosskopf DG, Felix G, Boller T. 1990. K-252a inhibits the response of tomato cells to fungal elicitors in vivo and their microsomal protein kinase in vitro. FEBS Lett 275:177–180PubMedCrossRefGoogle Scholar
  41. Guzman P, Ecker JR. 1990. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2:513–523PubMedCrossRefGoogle Scholar
  42. Hamilton AJ, Bouzayen M, Grierson D. 1991. Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast. Proc Natl Acad Sci USA 88:7434–7437PubMedCrossRefGoogle Scholar
  43. Hamilton AJ, Lycett GW, Grierson D. 1990. Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature 346:284–287CrossRefGoogle Scholar
  44. Hegg EL, Que LJ. 1997. The 2-His-1-carboxylate facial triad. Eur J Biochem 250:625–629PubMedCrossRefGoogle Scholar
  45. Heidstra R, Yang WC, Yalcin Y, Peck S, Emons AM, et al. 1997. Ethylene provides positional information on cortical cell division but is not involved in Nod factor-induced root hair tip growth in Rhizobium–legume interaction. Development 124:1781–1787PubMedGoogle Scholar
  46. Huang ZJ, Zhang ZJ, Zhang XL, Zhang HB, Huang DF, et al. 2004. Tomato TERF1 modulates ethylene response and enhances osmotic stress tolerance by activating expression of downstream genes. FEBS Lett 573:110–116PubMedCrossRefGoogle Scholar
  47. Ishiki Y, Oda A, Yaegashi Y, Orihara Y, Arai T, et al. 2000 Cloning of an auxin-responsive 1-aminocyclopropane-1-carboxylate synthase gene (CMe-ACS2) from melon and the expression of ACS genes in etiolated melon seedlings and melon fruits. Plant Sci 159:173–181PubMedCrossRefGoogle Scholar
  48. Jiao X, Yip WK, Yang SF. 1987. The effect of light and phytochrome on 1-aminocyclopropane-1-carboxylic acid metabolism in etiolated wheat seedling leaves. Plant Physiol 85:643–647PubMedGoogle Scholar
  49. John I, Drake R, Fareel A, Cooper W, Lee P, et al. 1995. Delayed leaf senescence in ethylene-deficient ACC-oxidase antisense tomato plants: molecular and physiological analysis. Plant J 7:483–490CrossRefGoogle Scholar
  50. Jung T, Lee JH, Cho MH, Kim WT. 2000. Induction of 1-aminocyclopropane-1-carboxylate oxidase mRNA by ethylene in mung bean roots: possible involvement of Ca2+ and phosphoinositides in ethylene signalling. Plant Cell Environ 23:205–213CrossRefGoogle Scholar
  51. Kende H. 1993. Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44:283–307CrossRefGoogle Scholar
  52. Kende H, Boller T. 1981. Wound ethylene and 1-aminocyclopropane-1-carboxylate synthase in ripening tomato fruit. Planta 151:476–481CrossRefGoogle Scholar
  53. Kieber JJ, Rothenburg M, Roman G, Feldmann KA, Ecker JR. 1993. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72:427–441PubMedCrossRefGoogle Scholar
  54. Kim CY, Liu Y, Thorne ET, Yang H, Fukushige H, et al. 2003. Activation of a stress-responsive mitogen-activated protein kinase cascade induces the biosynthesis of ethylene in plants. Plant Cell 15:2707–2718PubMedCrossRefGoogle Scholar
  55. Klee HJ, Hayford MB, Kretzmer KA, Barry GF, Kishore GM. 1991. Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell 3:1187–1193PubMedCrossRefGoogle Scholar
  56. Knight LI, Rose RC, Crocker W. 1910. Effects of various gases and vapors upon etiolated seedlings of the sweet pea. Science 31:635–636Google Scholar
  57. Knoester M, Bol JF, Vanloon LC, Linthorst HJM. 1995. Virus-induced gene-expression for enzymes of ethylene biosynthesis in hypersensitively reacting tobacco. Mol Plant Microbe Interact 8:177–180PubMedGoogle Scholar
  58. Kumar S, Tamura K, Nei M. 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163PubMedCrossRefGoogle Scholar
  59. Larsen PB, Cancel JD. 2004. A recessive mutation in the RUB1-conjugating enzyme, RCE1, reveals a requirement for RUB modification for control of ethylene biosynthesis and proper induction of basic chitinase and PDF1.2 in Arabidopsis. Plant J 38:626–638PubMedCrossRefGoogle Scholar
  60. Li J, Qu L, Li N. 2005. Tyr152 plays a central role in the catalysis of 1-aminocyclopropane-1-carboxylate synthase. J Exp Bot 56:2203–2210PubMedCrossRefGoogle Scholar
  61. Liang X, Abel S, Keller JA, Shen NF, Theologis A. 1992. The 1-aminocyclopropane-1-carboxylate synthase gene family of Arabidopsis thaliana. Proc Natl Acad Sci USA 89:11046–11050PubMedCrossRefGoogle Scholar
  62. Liang X, Oono Y, Shen NF, Köhler C, Li K, et al. 1995. Characterization of two members (ACS1 and ACS3) of the 1-aminocyclopropane-1-carboxylate synthase gene family of Arabidopsis thaliana. Gene 167:17–24PubMedCrossRefGoogle Scholar
  63. Liang X, Shen NF, Theologis A. 1996. Li+-regulated 1-aminocyclopropane-1-carboxylate synthase gene expression in Arabidopsis thaliana. Plant J 10:1027–1036PubMedCrossRefGoogle Scholar
  64. Ligero F, Lluch C, Olivares J. 1987. Evolution of ethylene from roots and nodulation rate of Alfalfa (Medicago sativa L.) plants inoculated with Rhizobium meliloti as affected by the presence of nitrate. J Plant Physiol 129:461–467Google Scholar
  65. Lincoln J, Campbell A, Oetiker J, Rottmann W, Oeller P, et al. 1993. LE-ACS4, a fruit-ripening and wound-induced 1-aminocyclopropane-1-carboxylate synthase gene of tomato (Lycopersicon esculentum). Expression in Escherichia coli, structural characterization, expression characteristics, and phylogenetic analysis. J Biol Chem 268:19422–19430PubMedGoogle Scholar
  66. Liu Y, Zhang S. 2004. Phosphorylation of ACC synthase by MPK6, a stress-responsive MAPK, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16:3386–3399PubMedCrossRefGoogle Scholar
  67. Ludwig AA, Saitoh H, Felix G, Freymark G, Miersch O, et al. 2005. Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proc Natl Acad Sci USA 102:10736–10741PubMedCrossRefGoogle Scholar
  68. Mattoo AK, Suttle JC. 1991. The Plant Hormone Ethylene. Boca Raton, FL, USA, CRC PressGoogle Scholar
  69. Mayne RG, Kende H. 1986. Ethylene biosynthesis in isolated vacuoles of Vicia faba L.— requirement for membrane integrity. Planta 167:159–165CrossRefGoogle Scholar
  70. McKeon TA, Hoffman NE, Yang SF. 1982. The effect of plant-hormone pretreatments on ethylene production and synthesis of 1-aminocyclopropane-1-carboxylic acid in water-stressed wheat leaves. Planta 155:437–443CrossRefGoogle Scholar
  71. Mehlhorn H, Wellburn AR. 1987. Stress ethylene formation determines plant sensitivity to ozone. Nature 327:417–418CrossRefGoogle Scholar
  72. Miyazaki JH, Yang SF. 1987. The methionine salvage pathway in relation to ethylene and polyamine biosynthesis. Physiol Plant 69:366–370CrossRefGoogle Scholar
  73. Nagahama K, Ogawa T, Fujii T, Fukuda H. 1992. Classification of ethylene-producing bacteria in terms of biosynthetic pathways to ethylene. J Ferment Bioengineer 73:1–5CrossRefGoogle Scholar
  74. Nakajima N, Itoh T, Takikawa S, Asai N, Tamaoki M, et al. 2002. Improvement in ozone tolerance of tobacco plants with an antisense DNA for 1-aminocyclopropane-1-carboxylic acid synthase. Plant Cell Environ 25:727–736CrossRefGoogle Scholar
  75. Neljubov D. 1901. Uber die horizontale Nutation der Stengel von Pisum sativum und einiger Anderer. Pflanzen Beih Bot Zentralb 10:128–139Google Scholar
  76. Nukui N, Ezura H, Yuhashi KI, Yasuta T, Minamisawa K. 2000. Effects of ethylene precursor and inhibitors for ethylene biosynthesis and perception on nodulation in Lotus japonicus and Macroptilium atropurpureum. Plant Cell Physiol 41:893–897PubMedCrossRefGoogle Scholar
  77. O’Donnel PJ, Calvert C, Atzorn R, Waternack C, Leyser HMO, et al. 1996. Ethylene as a signal mediating the wound response of tomato plants. Science 274:1914–1917CrossRefGoogle Scholar
  78. Ogawa D, Nakajima N, Sano T, Tamaoki M, Aono M, et al. 2005. Salicylic acid accumulation under O3 exposure is regulated by ethylene in tobacco plants. Plant Cell Physiol 46:1062–1072PubMedCrossRefGoogle Scholar
  79. Olson DC, White JA, Edelman L, Harkins RN, Kende H. 1991. Differential expression of two genes for 1-aminocyclopropane-1-carboxylate synthase in tomato fruits. Proc Natl Acad Sci USA 88:5340–5344PubMedCrossRefGoogle Scholar
  80. Overmyer K, Brosche M, Kangasjarvi J. 2003. Reactive oxygen species and hormonal control of cell death. Trends Plant Sci 8:335–342PubMedCrossRefGoogle Scholar
  81. Peiser GD, Wang T, Hoffman NE, Yang SF, Liu H, et al. 1984. Formation of cyanide from carbon 1 of 1-aminocyclopropane-1-carboxylic acid during its conversion to ethylene. Proc Natl Acad Sci USA 81:3059–3063PubMedCrossRefGoogle Scholar
  82. Peng HP, Lin TY, Wang NN, Shih MC. 2005. Differential expression of genes encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis during hypoxia. Plant Mol Biol 58:15–25PubMedCrossRefGoogle Scholar
  83. Penninckx IA, Thomma BP, Buchala A, Metraux JP, Broekaert WF. 1998. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10:2103–2113PubMedCrossRefGoogle Scholar
  84. Petruzzelli L, Sturaro M, Mainieri D, Leubner-Metzger G. 2003. Calcium requirement for ethylene-dependent responses involving 1-aminocyclopropane-1-carboxylic acid oxidase in radicle tissues of germinated pea seeds. Plant Cell Environ 26:661–671CrossRefGoogle Scholar
  85. Pintard L, Willems A, Peter M. 2004. Cullin-based ubiquitin ligases: Cul3–BTB complexes join the family. EMBO J 23:1681–1687PubMedCrossRefGoogle Scholar
  86. Reinhardt D, Kende H, Boller T. 1994. Subcellular localization of 1-aminocyclopropane-1-carboxylate oxidase in tomato cells. Planta 195:142–146CrossRefGoogle Scholar
  87. Rombaldi C, Lelievre JM, Latche A, Petitprez M, Bouzayen M, et al. 1994. Immunocytolocalization of 1-aminocyclopropane-1-carboxylic acid oxidase in tomato and apple fruit. Planta 192:453–460PubMedCrossRefGoogle Scholar
  88. Rottmann WH, Peter GF, Oeller PW, Keller JA, Shen NF, et al. 1991. 1-Aminocyclopropane-1-carboxylate synthase in tomato is encoded by a multigene family whose transcription is induced during fruit and floral senescence. J Mol Biol 222:937–961PubMedCrossRefGoogle Scholar
  89. Sebastià CH, Hardin SC, Clouse SD, Kieber JJ, Huber SC. 2004. Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate. Arch Biochem Biophys 428:81–91CrossRefGoogle Scholar
  90. Sinn JP, Schlagnhaufer CD, Arteca RN, Pell EJ. 2004. Ozone-induced ethylene and foliar injury responses are altered in 1-aminocyclopropane-1-carboxylate synthase antisense potato plants. New Phytol 164:267–277CrossRefGoogle Scholar
  91. Smith CJS, Slater A, Grierson D. 1986. Rapid appearance of an mRNA correlated to ethylene synthesis encoding a protein of molecular weight of 35000. Planta 168:94–100CrossRefGoogle Scholar
  92. Spanu P, Felix G, Boller T. 1990. Inactivation of stress induced 1-aminocyclopropane carboxylate synthase in vivo differs from substrate-dependent inactivation in vitro. Plant Physiol 93:1482–1485PubMedCrossRefGoogle Scholar
  93. Spanu P, Grosskopf DG, Felix G, Boller T. 1994. The apparent turnover of 1-aminocyclopropane-1-carboxylate synthase in tomato cells is regulated by protein phosphorylation and dephosphorylation. Plant Physiol 106:529–535PubMedGoogle Scholar
  94. Spanu P, Reinhart D, Boller T. 1991. Analysis and cloning of the ethylene-forming enzyme from tomato by functional expression of its mRNA in Xenopus laevis oocytes. EMBO J 10:2007–2013PubMedGoogle Scholar
  95. Staswick PE, Tiryaki I. 2004. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–2127PubMedCrossRefGoogle Scholar
  96. Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, et al. 2006. Cytokinin and auxin inhibit abscisic acid-induced stomatal closure by enhancing ethylene production in Arabidopsis. J Exp Bot 57:2259–2266PubMedCrossRefGoogle Scholar
  97. Tarun AS, Lee JS, Theologis A. 1998. Random mutagenesis of 1-aminocyclopropane-1-carboxylate synthase: a key enzyme in ethylene biosynthesis. Proc Natl Acad Sci USA 95:9796–9801PubMedCrossRefGoogle Scholar
  98. Tarun AS, Theologis A. 1998. Complementation analysis of mutants of 1-aminocyclopropane-1-carboxylate synthase reveals the enzyme is a dimer with shared active sites. J Biol Chem 273:12509–12514PubMedCrossRefGoogle Scholar
  99. Tatsuki M, Mori H. 2001. Phosphorylation of tomato 1-aminocyclopropane-1-carboxylic acid synthase, LE-ACS2, at the C-terminal region. J Biol Chem 276:28051–28057PubMedCrossRefGoogle Scholar
  100. Tsuchisaka A, Theologis A. 2004. Heterodimeric interactions among the 1-amino-cyclopropane-1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family. Proc Natl Acad Sci USA 101:2275–2280PubMedCrossRefGoogle Scholar
  101. Tsuchisaka A, Theologis A. 2004. Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiol 136:2982–3000PubMedCrossRefGoogle Scholar
  102. Tuominen H, Overmyer K, Keinanen M, Kollist H, Kangasjarvi J. 2004. Mutual antagonism of ethylene and jasmonic acid regulates ozone-induced spreading cell death in Arabidopsis. Plant J 39:59–69PubMedCrossRefGoogle Scholar
  103. Vahala J, Schlagnhaufer CD, Pell EJ. 1998. Induction of an ACC synthase cDNA by ozone in light-grown Arabidopsis thaliana leaves. Physiol Plant 103:45–50CrossRefGoogle Scholar
  104. van Loon LC, Geraats BJ, Linthorst HJM. 2006. Ethylene as a modulator of disease resistance in plants. Trend Plant Sci 11:184–191CrossRefGoogle Scholar
  105. Vogel JP, Schuerman P, Woeste KW, Brandstatter I, Kieber JJ. 1998. Isolation and characterization of Arabidopsis mutants defective in induction of ethylene biosynthesis by cytokinin. Genetics 149:417–427PubMedGoogle Scholar
  106. Vogel JP, Woeste KW, Theologis A, Kieber JJ. 1998. Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc Natl Acad Sci USA 95:4766–4771PubMedCrossRefGoogle Scholar
  107. Wang KL-C, Yoshida H, Lurin C, Ecker JR. 2004. Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature 428:945–950PubMedCrossRefGoogle Scholar
  108. Wang N, Shih M, Li N. 2005. The GUS reporter-aided analysis of the promoter activities of Arabidopsis ACC synthase genes AtACS4, AtACS5, and AtACS7 induced by hormones and stresses. J Exp Bot 56:909–920PubMedCrossRefGoogle Scholar
  109. Wasternack C, Stenzel I, Hause B, Hause G, Kutter C, et al. 2006 The wound response in tomato—role of jasmonic acid. J Plant Physiol 163:297–306PubMedCrossRefGoogle Scholar
  110. Weingart H, Ullrich H, Geider K, Volksch B. 2001. The role of ethylene production in virulence of Pseudomonas syringae pvs. glycinea and phaseolicola. Phytopathology 91:511–518CrossRefPubMedGoogle Scholar
  111. Weingart H, Volksch B. 1997. Ethylene production by Pseudomonas syringae pathovars in vitro and in planta. Appl Environ Microbiol 63:156–161PubMedGoogle Scholar
  112. White MF, Vasquez J, Yang SF, Kirsch JF. 1994. Expression of apple 1-aminocyclopropane-1-carboxylate synthase in Escherichia coli: kinetic characterization of wild-type and active-site mutant forms. Proc Natl Acad Sci USA 12428–12432Google Scholar
  113. Willems AR, Schwab M, Tyers M. 2004. A hitchhiker’s guide to the cullin ubiquitin ligases: SCF and its kin. Biochim Biophys Acta 1695:133–170PubMedCrossRefGoogle Scholar
  114. Woeste K, Vogel JP, Kieber JJ. 1999. Factors regulating ethylene biosynthesis in etiolated Arabidopsis thaliana seedlings. Physiol Plant 105:478–484CrossRefGoogle Scholar
  115. Woeste K, Ye C, Kieber JJ. 1999. Two Arabidopsis mutants that overproduce ethylene are affected in the post-transcriptional regulation of ACC synthase. Plant Physiol 119: 521–530PubMedCrossRefGoogle Scholar
  116. Wu JT, Lin HC, Hu YC, Chien CT. 2005. Neddylation and deneddylation regulate Cul1 and Cul3 protein accumulation. Nat Cell Biol 7:1014–1020PubMedCrossRefGoogle Scholar
  117. Yamagami T, Tsuchisaka A, Yamada K, Haddon WF, Harden LA, et al. 2003. Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J Biol Chem 278:49102–49112PubMedCrossRefGoogle Scholar
  118. Yang SF, Hoffman NE. 1984. Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155–189CrossRefGoogle Scholar
  119. Yasuta T, Satoh S, Minamisawa K. 1999. New assay for rhizobitoxine based on inhibition of 1-aminocyclopropane-1-carboxylate synthase. Appl Environ Microbiol 65:849–852PubMedGoogle Scholar
  120. Yip WK, Dong JG, Kenny JW, Thompson GA, Yang SF. 1990. Characterization and sequencing of the active site of 1-aminocyclopropane-1-carboxylate synthase. Proc Natl Acad Sci USA 87:7930–7934PubMedCrossRefGoogle Scholar
  121. Yip WK, Moore T, Yang SF. 1992. Differential accumulation of transcripts for four tomato 1-aminocyclopropane-1-carboxylate synthase homologs under various conditions. Proc Natl Acad Sci USA 89:2475–2479PubMedCrossRefGoogle Scholar
  122. Yoshida H, Nagata M, Saito K, Wang KL, Ecker JR. 2005. Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases. BMC Plant Biol 5:14PubMedCrossRefGoogle Scholar
  123. Yoshida H, Wang KL, Chang CM, Mori K, Uchida E, et al. 2006. The ACC synthase TOE sequence is required for interaction with ETO1 family proteins and destabilization of target proteins. Plant Mol Biol 62:427–437PubMedCrossRefGoogle Scholar
  124. Young TE, Meeley RB, Gallie DR. 2004. ACC synthase expression regulates leaf performance and drought tolerance in maize. Plant J 40:813–825PubMedCrossRefGoogle Scholar
  125. Zarembinski TI, Theologis A. 1994. Ethylene biosynthesis and action: a case of conservation. Plant Mol Biol 26:1579–1597PubMedCrossRefGoogle Scholar
  126. Zhao XC, Schaller GE. 2004. Effect of salt and osmotic stress upon expression of the ethylene receptor ETR1 in Arabidopsis thaliana. FEBS Lett 562:189–192PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Cristiana T. Argueso
    • 1
  • Maureen Hansen
    • 1
  • Joseph J. Kieber
    • 1
  1. 1.Department of BiologyUniversity of North CarolinaChapel HillUSA

Personalised recommendations