Journal of Plant Growth Regulation

, Volume 25, Issue 4, pp 302–312 | Cite as

Modeling Auxin Transport and Plant Development

Article

Abstract

The plant hormone auxin plays a critical role in plant development. Central to its function is its distribution in plant tissues, which is, in turn, largely shaped by intercellular polar transport processes. Auxin transport relies on diffusive uptake as well as carrier-mediated transport via influx and efflux carriers. Mathematical models have been used to both refine our theoretical understanding of these processes and to test new hypotheses regarding the localization of efflux carriers to understand auxin patterning at the tissue level. Here we review models for auxin transport and how they have been applied to patterning processes, including the elaboration of plant vasculature and primordium positioning. Second, we investigate the possible role of auxin influx carriers such as AUX1 in patterning auxin in the shoot meristem. We find that AUX1 and its relatives are likely to play a crucial role in maintaining high auxin levels in the meristem epidermis. We also show that auxin influx carriers may play an important role in stabilizing auxin distribution patterns generated by auxin-gradient type models for phyllotaxis.

Keywords

Auxin Phyllotaxis Meristem Arabidopsis Pattern formation AUX1 PINFORMED1 Development 

Reference

  1. Adler I, Barabe D, Jean RV. 1997. A history of the study of phyllotaxis. Ann Bot 80:231–244CrossRefGoogle Scholar
  2. Aida M, Vernoux T, Furutani M, Traas J, Tasaka M. 2002. Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo. Development 129:3965–3974PubMedGoogle Scholar
  3. Benjamins R, Quint A, Weijers D, Hooykaas P, Offringa R. 2001. The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development 128:4057–4067PubMedGoogle Scholar
  4. Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, et al. 2003. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602PubMedCrossRefGoogle Scholar
  5. Bennett MJ, Marchant A, Green HG, May ST, Ward SP, et al. 1996. Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273:948–950PubMedCrossRefGoogle Scholar
  6. Campanoni P, Nick P. 2005. Auxin-dependent cell division and cell elongation. 1-Naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid activate different pathways. Plant Physiol 137:939–948PubMedCrossRefGoogle Scholar
  7. Christensen SK, Dagenais N, Chory J, Weigel D. 2000. Regulation of auxin response by the protein kinase PINOID. Cell 100:469–478PubMedCrossRefGoogle Scholar
  8. de la Fuente RK, Leopold AC. 1966. Kinetics of polar auxin transport. Plant Physiol 41:1481–Google Scholar
  9. de Reuille PB, Bohn-Courseau I, Ljung K, Morin H, Carraro N, et al. 2006. Computer simulations reveal properties of the cell–cell signaling network at the shoot apex in Arabidopsis. Proc Natl Acad Sci USA 103:1627–1632PubMedCrossRefGoogle Scholar
  10. Dharmasiri N, Dharmasiri S, Estelle M. 2005. The F-box protein TIR1 is an auxin receptor. Nature 435:441–445PubMedCrossRefGoogle Scholar
  11. Feugier FG, Mochizuki A, Iwasa Y. 2005. Self-organization of the vascular system in plant leaves: inter-dependent dynamics of auxin flux and carrier proteins. J Theor Biol 236:366–375PubMedCrossRefGoogle Scholar
  12. Friml J, Benkova E, Blilou I, Wisniewska J, Hamann T, et al. 2002a. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108:661–673CrossRefGoogle Scholar
  13. Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, et al. 2003. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153PubMedCrossRefGoogle Scholar
  14. Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K. 2002b. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809Google Scholar
  15. Friml J, Yang X, Michniewicz M, Weijers D, Quint A, et al. 2004. A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306:862–865PubMedCrossRefGoogle Scholar
  16. Fujita H, and Mochizuki A. 2006. Pattern formation of leaf veins by the positive feedback regulation between auxin flow and auxin efflux carrier. J Theor Biol 241:541–55PubMedCrossRefGoogle Scholar
  17. Galweiler L, Guan C, Muller A, Wisman E, Mendgen K, et al. 1998. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230PubMedCrossRefGoogle Scholar
  18. Goldsmith MHM. 1967. Movement of pulses of labeled auxin in corn coleoptiles. Plant Physiol 42:258Google Scholar
  19. Goldsmith MHM, Goldsmith TH, Martin MH. 1981. Mathematical-analysis of the chemosmotic polar diffusion of auxin through plant-tissues. Proc Natl Acad Sci USA—Biol Sci 78:976–980CrossRefGoogle Scholar
  20. Green PB, Steele CS, Rennich SC. 1996. Phyllotactic patterns: a biophysical mechanism for their origin. Ann Bot 77:515–527CrossRefGoogle Scholar
  21. Hadfi K, Speth V, Neuhaus G. 1998. Auxin-induced developmental patterns in Brassica juncea embryos. Development 125:879–887PubMedGoogle Scholar
  22. Hardtke CS, Berleth T. 1998. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. Embo J 17:1405–1411PubMedCrossRefGoogle Scholar
  23. Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, et al. 2005. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol 15:1899–1911PubMedCrossRefGoogle Scholar
  24. Jönsson H, Heisler MG, Shapiro BE, Mjolsness E, Meyerowitz EM. 2006. An auxin-driven polarized transport model for phyllotaxis. Proc Natl Acad Sci USA 103:1633–1638PubMedCrossRefGoogle Scholar
  25. Kepinski S, Leyser O. 2005. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451PubMedCrossRefGoogle Scholar
  26. Kramer EM. 2004. PIN and AUX/LAX proteins: their role in auxin accumulation. Trends Plant Sci 9:578–582PubMedCrossRefGoogle Scholar
  27. Leopold AC, Hall OF. 1966. Mathematical model of polar auxin transport. Plant Physiol 41:476CrossRefGoogle Scholar
  28. Lobler M, Klambt D. 1985. Auxin-binding protein from coleoptile membranes of corn (Zea-mays L).2. Localization of a putative auxin receptor. J Biol Chem 260:9854–9859Google Scholar
  29. Long Ja, Barton MK. 1998. The development of apical embryonic pattern in Arabidopsis. Development 125:3027–3035Google Scholar
  30. Marchant A, Kargul J, May ST, Muller P, Delbarre A, Perrot, et al. 1999. AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. Embo J 18:2066–2073Google Scholar
  31. Martin MH, Goldsmith MHM, Goldsmith TH. 1990. On polar auxin transport in plant-cells. J Math Biol 28:197–223PubMedCrossRefGoogle Scholar
  32. Mattsson J, Ckurshumova W, Berleth T. 2003. Auxin signaling in Arabidopsis leaf vascular development. Plant Physiol 131:1327–1339PubMedCrossRefGoogle Scholar
  33. Meinhardt H, Koch AJ, Bernasconi G. 1998. Models of pattern formation applied to plant development. In Barabe D, Jean RV (eds.) Symmetry in Plants. Singapore, World Scientific Publishing, pp. 723–758Google Scholar
  34. Mitchison GJ. 1977. Phyllotaxis and Fibonacci series. Science 196:270–275CrossRefPubMedGoogle Scholar
  35. Mitchison GJ. 1980a. The dynamics of auxin transport. Proc R Soc Lond Ser B–Biol Sci 209:489–511Google Scholar
  36. Mitchison GJ. 1980b. Model for vein formation in higher plants. Proc R Soc Lond Ser B–Biol Sci 207:79–109CrossRefGoogle Scholar
  37. Mitchison GJ. 1981. The polar transport of auxin and vein patterns in plants. Philos Trans R Soc Lond Ser B–Biol Sci 295: 461Google Scholar
  38. Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y. 1991. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3:677–684PubMedCrossRefGoogle Scholar
  39. Petrasek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M, et al. 2006. PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312:914–918PubMedCrossRefGoogle Scholar
  40. Przemeck GK, Mattsson J, Hardtke CS, Sung ZR, Berleth T. 1996. Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. Planta 200:229–237PubMedCrossRefGoogle Scholar
  41. Raven JA. 1975. Transport of indoleacetic-acid in plant-cells in relation to pH and electrical potential gradients, and its significance for polar IAA transport. New Phytologist 74:163–172CrossRefGoogle Scholar
  42. Reddy GV, Heisler MG, Ehrhardt DW, Meyerowitz EM. 2004. Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana. Development 131:4225–4237PubMedCrossRefGoogle Scholar
  43. Reinhardt D, Mandel T, Kuhlemeier C. 2000. Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12:507–518PubMedCrossRefGoogle Scholar
  44. Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, et al. 2003. Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260PubMedCrossRefGoogle Scholar
  45. Rubery PH, Sheldrake AR. 1974. Carrier-mediated auxin transport. Planta 118:101–121CrossRefGoogle Scholar
  46. Runions A, Fuhrer M, Lane B, Federl P, Rolland-Lagan AG, et al. 2005. Modeling and visualization of leaf venation patterns. ACM Trans Graphics 24:702–711CrossRefGoogle Scholar
  47. Sachs T. 1981. The control of the patterned differentiation of vascular tissues. Adv Bot Res Incorporating Adv Plant Pathol 9:151–262Google Scholar
  48. Scarpella E, Francis P, Berleth T. 2004. Stage-specific markers define early steps of procambium development in Arabidopsis leaves and correlate termination of vein formation with mesophyll differentiation. Development 131:3445–3455PubMedCrossRefGoogle Scholar
  49. Scarpella E, Marcos D, Friml J, Berleth T. 2006. Control of leaf vascular patterning by polar auxin transport. Genes Dev 20:1015–1027PubMedCrossRefGoogle Scholar
  50. Schoute JC. 1913. Beiträge zur Blattstellungslehre. Récueil Trav Bot Néerl 10:153–325Google Scholar
  51. Schrader J, Baba K, May ST, Palme K, Bennett M, et al. 2003. Polar auxin transport in the wood-forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals. Proc Natl Acad Sci USA 100:10096–10101PubMedCrossRefGoogle Scholar
  52. Shipman PD, Newell AC. 2004. Phyllotactic patterns on plants. Phys Rev Lett 92: 168–702CrossRefGoogle Scholar
  53. Shipman, PD and Newell, AC. 2005. Polygonal planforms and phyllotaxis on plants. J Theor Biol 236:154–197PubMedCrossRefGoogle Scholar
  54. Sieburth LE. 1999. Auxin is required for leaf vein pattern in Arabidopsis. Plant Physiol 121:1179–1190PubMedCrossRefGoogle Scholar
  55. Smith RS, Guyomarc’h S, Mandel T, Reinhardt D, Kuhlemeier C, et al. 2006. A plausible model of phyllotaxis. Proc Natl Acad Sci USA 103:1301–1306PubMedCrossRefGoogle Scholar
  56. Snow M, Snow R. 1937. Auxin and leaf initiation. New Phytol 36:1–18CrossRefGoogle Scholar
  57. Steeves TA, Sussex IM. 1989. Patterns in Plant Development. Cambridge, England, UK, Cambridge University PressGoogle Scholar
  58. Swarup R, Kargul J, Marchant A, Zadik D, Rahman A, et al. 2004. Structure–function analysis of the presumptive Arabidopsis auxin permease AUX1. Plant Cell 16:3069–3083PubMedCrossRefGoogle Scholar
  59. Swarup R, Kramer EM, Perry P, Knox K, Leyser HM, et al. 2005. Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat Cell Biol 7:1057–1065PubMedCrossRefGoogle Scholar
  60. Weijers D, Sauer M, Meurette O, Friml J, Ljung K, et al. 2005. Maintenance of embryonic auxin distribution for apical-basal patterning by PIN-FORMED-dependent auxin transport in Arabidopsis. Plant Cell 17:2517–2526PubMedCrossRefGoogle Scholar
  61. Wisniewska J, Xu J, Seifertova D, Brewer PB, Ruzicka K, et al. 2006. Polar PIN localization directs auxin flow in plants. Science 312:883PubMedCrossRefGoogle Scholar
  62. Yang Y, Hammes UZ, Taylor CG, Schachtman DP, Nielsen E. 2006. High-affinity auxin transport by the AUX1 influx carrier protein. Curr Biol 16:1123–1127PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Division of BiologyCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Computational Biology and Biological Physics, Department of Theoretical PhysicsLund UniversityLundSweden

Personalised recommendations