Advertisement

Journal of Plant Growth Regulation

, Volume 26, Issue 1, pp 1–14 | Cite as

New Techniques for the Estimation of Naturally Occurring Brassinosteroids

  • Jana Swaczynová
  • Ondřej Novák
  • Eva Hauserová
  • Květoslava Fuksová
  • Miroslav Šíša
  • Ladislav Kohout
  • Miroslav Strnad
NOVEL TECHNIQUES

Abstract

We have developed enzyme-linked immunosorbent assays (ELISAs) for measuring 24-epicastasterone and related brassinolide analogs, with detection ranges of 0.005 to 50 pmoles. Polyclonal antibodies used in these assays were raised against 24-epicastasterone carboxymethyloxime-bovine serum albumin conjugates and were found to have high specificity for 24-epibrassinosteroids. Natural brassinosteroids (BRs), such as brassinolide and 24-epibrassinolide, exhibited relatively high cross-reactivities with the generated antibodies, whereas other BR analogs with β-oriented hydroxyl groups at C-2, C-3, C-22, and C23 lacked immunoreactivity. Through the use of internal standardization, dilution assays, recovery of authentic [3H]24-epicastasterone, and immunohistograms, the ELISAs have been shown to be applicable for estimating 24-epibrassinosteroid levels in crude plant extracts. To analyze brassinosteroids in tissues from young bean (Phaseolus vulgaris L., cv. Pinto), Daucus carota ssp.sativus plants and Arabidopsis thaliana L. Heynh. seedlings, and rape (Brassica napus L.) pollen, the extracts were fractionated by high performance liquid chromatography (HPLC) and the resulting fractions were analyzed by the ELISA method. Immunohistogram ELISA analysis of HPLC fractions indicated that major peaks of immunoreactivity co-chromatographed with the labeled and unlabeled 24-epibrassinolide. A highly sensitive electrospray ionization mass spectrometry (MS) technique (LOD: 50 fmol) was also developed and the results obtained by the HPLC-ELISA and HPLC-MS approaches were compared.

Keywords

Antibodies Arabidopsis Brassinosteroids Enzyme immunoassay HPLC-MS Rape pollen 

Notes

Acknowledgments

The authors thank Jarmila Balonová for excellent technical assistance. We would also like to thank Sees-editing Ltd. (http://www.sees-editing Ltd.) for the excellent editing of this manuscript. This work was supported by a grant from the Czech Ministry of Education (No. MSM 6198959216, LCO 6034, Z406605061).

References

  1. Adam G, Porzel A, Schnidt J, Schneider B, Voight B. 1996. New developments in brassinosteroid research. In Rahman A, editor. Studies in Natural Product Chemistry. Elsevier Science, Amsterdam, The Netherlands, pp. 495–549Google Scholar
  2. Badenoch-Jones J, Letham DS, Parker CW, Rolf BG. 1984. Quantification of cytokinins in biological samples using antibodies against zeatin riboside. Plant Physiol 75:1117–1125PubMedGoogle Scholar
  3. Díaz-Cruz S, Lopez de Alda M, Lopez R, Barcelo D. 2003. Determination of estrogens and progestogens by mass spectrometric techniques (GC/MS, LC/MS and LC/MS/MS). J Mass Spectrom 38:917–923PubMedCrossRefGoogle Scholar
  4. Drosihn S, Porzel A, Brandt W. 2001. Determination of preferred conformations of brassinosteroids by means of NMR investigations and Boltzmann stastistical analysis of simulated annealing calculations. J Mol Model 7:34–42CrossRefGoogle Scholar
  5. Erlanger BF. 1967. The preparation of steroid-protein conjugates to elicit antihormonal antibodies. Methods Immunol Immunochem 1:144–150Google Scholar
  6. Fujioka S. 1999. Natural occurence of brassinosteroids in the plant kingdom. In Sakurai A, Yokota T, Clouse SD, editors. Brassinosteroids: Steroidal Plant Hormones. Springer Verlag, Tokyo, Japan, pp. 21–45Google Scholar
  7. Gamoh K, Takatsuto S. 1989a. A new boronic acid derivative as a highly sensitive fluorescence derivatization reagent for brassinosteroids in liquid chromatography. Anal Chim Acta 222:201–204CrossRefGoogle Scholar
  8. Gamoh K, Takatsuto S. 1994. Liquid chromatography assay of brassinosteroids in plants. J Chromatogr A 658:17–25CrossRefGoogle Scholar
  9. Gamoh K, Kitsuwa T, Takatsuto S, et al. 1988. Determination of trace brassinosteroids by HPLC. Anal Sci 4:533–535Google Scholar
  10. Gamoh K, Omote K, Okamoto N, et al. 1989b. HPLC of brassinosteroids in plants with derivatization using 9-phenanthreneboronic acid. J Chromatogr 469:424–428CrossRefGoogle Scholar
  11. Gamoh K, Okamoto N, Takatsuto S, et al. 1990a. Determination of traces of natural brassinosteroids as a dansylaminophenylboronates by LC fluorometric detection. Anal Chim Acta 228:101–105CrossRefGoogle Scholar
  12. Gamoh K, Sawamoto H, Takatsuto S, et al. 1990b. Ferrocene boronic acid as a derivatization reagent for the determination of brassinosteroids by HPLC with electrochemical detection. J Chromatogr 515:227–231CrossRefGoogle Scholar
  13. Gamoh K, Takatsuto S, Ikekawa N. 1992. Effective separation of C-24-epimeric brassinosteroids by LC. Anal Chim Acta 256:319–322CrossRefGoogle Scholar
  14. Gamoh K, Yamaguchi I, Takatsuto S. 1994. Rapid and selective sample preparation for the chromatographic determination of brassinosteroids from plant material using solid-phase extraction method. Anal Sci 10:913–917Google Scholar
  15. Gamoh K, Abe H, Shimada K, et al. 1996. LC/MS with atmospheric pressure chemical ionization of free brassinosteoids. Rapid Commun Mass Spectrom 10:903–906CrossRefGoogle Scholar
  16. Gross H, Bilk L. 1968. Zur reaktion von N- hydroxysuccinimide mit dicyklohexylcarbodiimid. Tetrahedron 24:6935–6939CrossRefGoogle Scholar
  17. Grove MD, Spencer FG, Rohwedder WK, Mandava NB, et al. 1979. Brassinolide, a plant growth promoting steroid isolated from Brassica napus pollen. Nature 281:216–217CrossRefGoogle Scholar
  18. Harlow E, Lane D. 1988. Antibodies—A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA, 726 ppGoogle Scholar
  19. Horgen PA, Nakagawa CH, Irvin RT. 1984. Production of monoclonal antibodies to steroidal plant growth regulator. Can Biochem Cell Biol 62:715–721CrossRefGoogle Scholar
  20. Jones HG. 1987. Correction for nonspecific interference in competitive immunoassays. Physiol Plant 70:146–154CrossRefGoogle Scholar
  21. Kauschmann A, Jessop A, Koncz C, Altmann T. 1997. Molecular/genetic analysis of brassinosteroid synthesis and action. Proc Plant Growth Regul Soc Am 24:95–96Google Scholar
  22. Khripach VA, Zhabinski V, de Groot AE. 1999. A New Class of Plant Hormones. Academic Press, San Diego, CA, USA, 456 ppGoogle Scholar
  23. Kohout L., 1994. New method of preparation of brassinosteroids. Coll Czech Chem Commun 59:457–460CrossRefGoogle Scholar
  24. Konstantinova VO, Antonchic AP, Zhabinskii VN, Khripach V, Schneider B. 2001. Analysis of underivatized brassinosteroids by HPLC/APCI-MS. Occurrence of 3-epibrassinolide in Arabidopsis thaliana. Collect Czech Chem Commun 66:1729–1734CrossRefGoogle Scholar
  25. Kuronen P, Vaananen T, Pehu E. 1999. Reversed-phase liquid chromatographic separation and simultaneous profiling of steroidal glycoalkaloids and their aglycones. J Chromatogr A 25:25–35CrossRefGoogle Scholar
  26. Ma Y-Ch, Kim H-Y. 1997. Determination of steroids by LC/MS. J Am Soc Mass Spectrom 8:1010–1020CrossRefGoogle Scholar
  27. Motegi C, Takatsuto S, Gamoh K. 1994. Identification of brassinolide and castasterone in the pollen of orange (Citrus sinensis) by HPLC. J Chromatogr A 658:27–30CrossRefGoogle Scholar
  28. Nomura T, Nakayama M, Reid JB. 1997. Blockage of brassinosteroid biosynthesis and sensitivity causes dwarfism in garden pea. Plant Physiol 113:31–37PubMedGoogle Scholar
  29. Nomura T, Sato T, Bishop JG, et al. 2001. Accumulation of 6-deoxocathasterone and 6-deoxocastasterone in Arabidopsis, pea and tomato is suggestive of common rate-limiting steps in brassinosteroid biosynthesis. Phytochemistry 57:171–178PubMedCrossRefGoogle Scholar
  30. Novák O, Tarkowski P, Tarkowská D, Lenobel R, Doležal K, Strnad M. 2003. Quantitative analysis of cytokinins in plants by LC–MS. Anal Chim Acta 480:207–218CrossRefGoogle Scholar
  31. O’Sullivan MJ. 1979. Enzyme immunoassay: a review. Anal Biochem 210:145–154Google Scholar
  32. Park KH, Yokota T, Sakurai A, Takahashi N. 1987. Occurrence of castasterone, brassinolide and methyl 4-chloroindole 3-acetate in immature Vicia faba seeds. Agric Biol Chem 54: 3081–3086Google Scholar
  33. Pengelly WJ. 1986. Validation of radioimmunoassay for IAA using gas-chromatography-selected ion monitoring-mass-spectrometry. In Bopp M, editor, Plant Growth Substances, Springer-Verlag, Heidelberg, Germany, pp. 35–43Google Scholar
  34. Pengelly WJ, Meins F. 1977. The relationship of indole-3-acetic acid content and growth of crown-gall tumor tissues of tobacco in culture. Planta 136:173–180CrossRefGoogle Scholar
  35. Prinsen E, Van Dongen W, Esmans E, Van Onckelen H. 1997. HPLC linked electrospray tandem mass spectrometry: a rapid and reliable method to analyse indole-3-acetic acid metabolism in bacteria. J Mass Spectrom 32:12–22CrossRefGoogle Scholar
  36. Prinsen E, Van Dongen W, Esmans E, Van Onckelen H. 1998. Micro and capillary liquid chromatography tandem mass spectrometry: a new dimension in phytohormone research. J Chromatogr A 826:25–37CrossRefGoogle Scholar
  37. Sakurai A. 1999. Brassinosteroid biosynthesis. Plant Physiol Biochem 37:351–361CrossRefGoogle Scholar
  38. Sasse J. 1999. Physiological actions of brassinosteroids In Sakurai A, Yokota T, Clouse SD, editors, Brassinosteroids: Steroidal Plant Hormones. Springer-Verlag, Tokyo, Japan, pp. 219–262Google Scholar
  39. Satake K. 1960. The spectrophotometric determination of amine, amino acid an peptide with 2,4,6-trinitrobenzene 1-sulfonic acid. J Biochem 47:654–660Google Scholar
  40. Schlagnhaufer CD, Arteca RN. Phillips AT. 1991. Induction of anti-brassinosteroid antibodies. J Plant Physiol 38:404–410Google Scholar
  41. Schlüsener MP, Bester K. 2005. Determination of steroid hormones, hormone conjugates and macrolide antibiotics in influents and effluents of sewage treatment plants utilising high-performance liquid chromatography/tandem mass spectrometry with electrospray and atmospheric pressure chemical ionisation. Rapid Commun Mass Spectrom 19:3269–78PubMedCrossRefGoogle Scholar
  42. Schmidt J, Spengler B, Yokota T, Adam G. 1993. The co-occurrence of 24-epicastasterone and castasterone in seeds of Ornithopus sativus. Phytochemistry 32:1614–1615CrossRefGoogle Scholar
  43. Schmidt J, Kuhnt C, Adam G. 1994. Brassinosteroids and sterols from seeds of Beta vulgaris. Phytochemistry 36:175–177CrossRefGoogle Scholar
  44. Schmidt J, Himmelreich U, Adam G. 1995. Brassinosteroids, sterols and lup-20(29)-en-2α,3β,28-triol from Rheum rhababarum. Phytochemistry 40:527–531CrossRefGoogle Scholar
  45. Schmidt J, Altmann T, Adam G. 1997. Brassinosteroids from seeds of Arabidopsis thaliana. Phytochemistry 45:1325–1327PubMedCrossRefGoogle Scholar
  46. Schmidt J, Porzel A, Adam G. 1998. Brassinosteroids and a pregnane glucoside from Daucus carote. Phytochem Anal 9:14–22CrossRefGoogle Scholar
  47. Shimada K, Mitamura K, Higashi T. 2001. Gas chromatography and high performance liquid chromatography of natural steroids. J Chromatogr A 935:141–172PubMedCrossRefGoogle Scholar
  48. Stoldt M, Porzel A, Adam G, Brandt W. 1997. Side chain conformation of the growth-promoting phytohormones brassinolide and 24-epibrassinolide. Magn Reson Chem 35:629–636CrossRefGoogle Scholar
  49. Strnad M, Hanus J, Vanek T, Kaminek M, Ballantine JA, Fussell B, Hanke DE. 1997. Meta-topolin, a highly active aromatic cytokinin from poplar leaves (Populus × canadensis Moench, cv Robusta). Phytochemistry 45:213–218CrossRefGoogle Scholar
  50. Strnad M, Vereš K, Hanuš J, Siglerová V. 1992a. Immunological methods for quantification and identification of cytokinins. In Kamínek M, Mok DWS, Zažímalová E, editors, Physiology and Biochemistry of Cytokinins in Plants. SPB Academic Publishers, The Hague, The Netherlands, pp. 437–446Google Scholar
  51. Strnad M, Peters W. Beck E, Kamínek M. 1992b. Immunodetection and identification of N6-(o-hydroxybenzylamino)purine as a naturally occurring cytokinin in Populus × canadensis Moench cv Robusta leaves. Plant Physiol 99:74–80CrossRefGoogle Scholar
  52. Svatoš A, Antonchick A, Schneider B. 2004. Determination of brassinosteroids in the sub-femtomolar range using dansyl-3-aminophenylboronate derivatization and electrospray mass spectrometry. Rapid Commun Mass Spectrom 18:816–821PubMedCrossRefGoogle Scholar
  53. Swaczynová J, Šíša M. Hniličková J, Kohout L, Strnad M. 2006. Synthesis, biological, immunological and anticancer properties of a new brassinosteroid ligand. Polish J Chem 80:629–635Google Scholar
  54. Šíša M. 2005. New Brassinosteroids Analogues, PhD. Thesis, Charles University, PragueGoogle Scholar
  55. Van Aerden C. Debrauwer L, Tabet JC. 1998. Analysis of nucleoside-estrogen adducts by LC-ESI-MS–MS. Analyst 123:2677–2680CrossRefGoogle Scholar
  56. Van Rhijn JA, Heskamp HH, Davelaar E, Jordi W, Leloux MS, et al. 2001. Quantitative determination of glycosylated and aglycon isoprenoid cytokinins at sub-picomolar levels by microcolumn LC combined with electrospray tandem mass spectrometry. J Chromatogr A 929:31–40CrossRefGoogle Scholar
  57. Takatsuto S. 1991. Microanalysis of naturally occuring brassinosteroids. In Cutler HG, Yokota T, Adam G, editors, Brassinosteroids: Chemistry, Bioactivity, and Applications, ACS Symp Ser 474. American Chemical Society, Washington, DC, USA, pp.1391–1397Google Scholar
  58. Weiler EW 1982. An enzyme-immunoassay for cis-(+)-abscisic acid. Physiol Plant 54:51–514Google Scholar
  59. Yokota T, Watanabe S, Ogino Y. 1990. Radioimmunoassay for brassinosteroids and its use for comparative analysis of brassinosteroids in stems and seeds of Phaseolus vulgaris. J Plant Growth Regul 9:151–159CrossRefGoogle Scholar
  60. Yokota T, Arima M, Takahashi N. 1982. Castasterone, a new phytosterol with plant-hormone potency, from chestnut insect gall. Tetrahedron Lett 23:1275–1278CrossRefGoogle Scholar
  61. Yokota T, Kim SK, Fukui Y, Tekematsu T. 1987. Brassinosteroids and sterols from a green alga, Hydrodictyon reticulatum: configuration at C-24. Phytochemistry 26:503–506CrossRefGoogle Scholar
  62. Yokota T, Baba J, Koba S. 1984. Purification and separation of eight steroidal plant-growth regulators from Dolichos lablab seed. Agric Biol Chem 48:2529–2534Google Scholar
  63. Yokota T, Nomura T, Nakayama M. 1997. Identification of brassinosteroids that appear to be derived from campesterol and cholesterol in tomato shoots. Plant Cell Physiol 38:1291–1294Google Scholar
  64. Zullo MAT, Kohout L, de Azevedo MBM. 2003. Some notes on terminology of brassinosteroids. Plant Growth Regul 39:1–11CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Jana Swaczynová
    • 1
  • Ondřej Novák
    • 1
  • Eva Hauserová
    • 1
  • Květoslava Fuksová
    • 1
  • Miroslav Šíša
    • 2
  • Ladislav Kohout
    • 2
  • Miroslav Strnad
    • 1
  1. 1.Laboratory of Growth RegulatorsPalacký University and Institute of Experimental Botany ASCROlomoucCzech Republic
  2. 2.Department of Steroid ChemistryInstitute of Organic Chemistry and Biochemistry ASCRPrague 6Czech Republic

Personalised recommendations