Journal of Plant Growth Regulation

, Volume 24, Issue 2, pp 67–82 | Cite as

Hormonal Regulation of Tomato Fruit Development: A Molecular Perspective

  • Alka Srivastava
  • Avtar K. HandaEmail author


Fruit development is a complex yet tightly regulated process. The developing fruit undergoes phases of cell division and expansion followed by numerous metabolic changes leading to ripening. Plant hormones are known to affect many aspects of fruit growth and development. In addition to the five classic hormones (auxins, gibberellins, cytokinins, abscisic acid and ethylene) a few other growth regulators that play roles in fruit development are now gaining recognition. Exogenous application of various hormones to different stages of developing fruits and endogenous quantifications have highlighted their importance during fruit development. Information acquired through biochemical, genetic and molecular studies is now beginning to reveal the possible mode of hormonal regulation of fruit development at molecular levels. In the present article, we have reviewed studies revealing hormonal control of fruit development using tomato as a model system with emphasis on molecular genetics.


Fruit development Lycopersicon esculentum Hormonal regulation, Auxins Cytokinins, Gibberellins Abscisic acid Ethylene Parthenocarpy 



We thank the reviewers and the editor for valuable comments that led to improvement of this article. This work was supported by grants from the U.S. Department of Agriculture IFAFS program (Award No 741740) and the United States-Israel Binational Agriculture Research and Development Fund (grant US-3132-99).


  1. Abdel-Rahman M, Thomas TH, Dossand GJ, Howell L. 1975. Changes in endogenous plant hormones in cherry tomato fruit during development and maturation. Physiol Plant 34:39–43CrossRefGoogle Scholar
  2. AbdelRahman M. 1977. Patterns of hormone respiration and ripening enzymes during development maturation and ripening of cherry tomato fruits. Physiol Plant 39:115–118CrossRefGoogle Scholar
  3. Abel S, Oeller PW, Theologis A. 1994. Early auxin-induced genes encode short-lived nuclear proteins. Proc Natl Acad Sci USA 89:326–330CrossRefGoogle Scholar
  4. Abel, S, Theologis, A 1996Early genes and auxin actionPlant Physiol111917PubMedPubMedCentralCrossRefGoogle Scholar
  5. Adams-Phillips, L, Barry, C, Giovannoni, J 2004Signal transduction systems regulating fruit ripeningTrends Plant Sci9331338PubMedCrossRefGoogle Scholar
  6. Alabadi, D, Agüero, MS, Pérez-Amador, MA, Carbonell, J 1996Arginase, arginine decarboxylase, ornithine decarboxylase, and polyamines in tomato ovaries: changes in unpollinated ovaries and parthenocarpic fruits induced by auxin and gibberellinPlant Physiol11212371244PubMedPubMedCentralCrossRefGoogle Scholar
  7. Alabadi, D, Carbonell, J 1998Expression of ornithine decarboxylase is transiently increased by pollination 2,4-D and GA3 in tomato ovariesPlant Physiol118323328PubMedPubMedCentralCrossRefGoogle Scholar
  8. Amitai-Zeigerson, H, Scolnik, PA, Bar-Zvi, D 1994Genomic nucleotide sequences of tomato Asr2, a second member of the stress/ripening–induced Asr1 gene familyPlant Physiol10616991700PubMedPubMedCentralCrossRefGoogle Scholar
  9. Antognoni, F, Ghetti, F, Mazzucato, A, Franceschetti, M, Bagn, N 2002Polyamine pattern during flower development in the parthenocarpic fruit (pat) mutant of tomatoPhysiol Plant116539547CrossRefGoogle Scholar
  10. Balbi, V, Lomax, TL 2003Regulation of early tomato fruit development by the Diageotropica genePlant Physiol131186197PubMedPubMedCentralCrossRefGoogle Scholar
  11. Balibrea Lara, ME, Garcia, MC, Fatima, T, Ehness, R, Lee, TK, and others,  2004Extracellular invertase is an essential component of cytokinin-mediated delay of senescencePlant Cell1612761287PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bangerth F.1981. Some effects of endogenous and exogenous hormones and growth regulators on growth and development of tomato fruits. In: Jeffcoat B (ed), Aspects and prospects of plant growth regulators. British Plant Growth Regulator Group Monograph no. 6. Wessex Press, Wantage, UK, pp 141–150Google Scholar
  13. Barg, R, Meir, E, Lapushner, D, Frankel, R, Salts, Y 1990Differential regulation of a fruit-specific 62 kDa protein in developing parthenocarpic (pat-2/pat-2) and seeded tomato fruitsPhysiol Plant80417424CrossRefGoogle Scholar
  14. Barry, C, Llop-Tous, MI, Grierson, D 2000The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomatoPlant Physiol123979986PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bensen, RJ, Zeevaart, JAD 1990Comparison of ent-kaurene synthetase A and B activities in cell-free extracts from young tomato fruits of wild-type and gib-1, gib-2, and gib-3 tomato plantsJ. Plant Growth Regul9237242CrossRefGoogle Scholar
  16. Berry, T, Bewley, JD 1991Seeds of tomato (Lycopersicon esculentum Mill) which develop in a fully hydrated environment in the fruit switch from a developmental to a germinative mode without a requirement for desiccationPlanta1862734PubMedCrossRefGoogle Scholar
  17. Bewley JD, Black M. 1994. Dormancy and the control of germination. In: Bewley JD, Black M (ed), Seeds: physiology of development and germination, 2nd editon. New York, USA, Plenum Press, pp 199–271CrossRefGoogle Scholar
  18. Bishop, GJ, Nomura, T, Yokota, T, Harrison, K, Noguchi, T,  et al. 1999The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesisProc Natl Acad Sci USA9617611766PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bishop, GJ 2003Brassinosteroid mutants of cropsJ Plant Growth Regul22325335PubMedCrossRefGoogle Scholar
  20. Bohner J, Bangerth F. 1988. Cell number cell size and hormone levels in semi-isogenic mutants of Lycopersicon pimpinefollium differing in fruit size. Physiol Plant 72:316–320CrossRefGoogle Scholar
  21. Bohner J, Hedden P, Bora-Haber E, Bangerth F. 1988. Identification and quantitation of gibberellins in fruits of Lycopersicon esculentum and their relationship to fruit size in L. esculentum and L. pimpinellifolium Physiol Plant 73:348–353CrossRefGoogle Scholar
  22. Bradford, KJ, Downie, AB, Gee, OH, Alvarado, V, Yang, H, and others,  2003Abscisic acid and gibberellin differentially regulate expression of genes of the snf1-related kinase complex in tomato seedsPlant Physiol13215601576PubMedPubMedCentralCrossRefGoogle Scholar
  23. Brenner ML, Cheikh N. 1995. The role of hormones in photosynthate partitioning and seed filling In: Davies PJ (ed), Plant hormones physiology biochemistry and molecular biology. Kluwer Academic Publishers, Dordrecht The Netherlands. pp 649–670Google Scholar
  24. Burbidge, A, Grieve, TM, Jackson, A, Thompson, A, McCarty, DR,  et al. 1999Characterization of the ABA-deficient tomato mutant notabilis and its relationship with maizePlant J17427431PubMedCrossRefGoogle Scholar
  25. Buta, JG, Spaulding, DW 1994Changes in indole-3-acetic acid and abscisic acid levels during tomato (Lycopersicon esculentum Mill.) fruit development and ripeningJ Plant Growth Regul13163166CrossRefGoogle Scholar
  26. Cakir, B, Agasse, A, Gaillard, C, Saumonneau, A, Delrot, S,  et al. 2003A grape ASR protein involved in sugar and abscisic acid signalingPlant Cell1521652180PubMedPubMedCentralCrossRefGoogle Scholar
  27. Carrari, F, Fernie, AR, Iusem, ND 2004Heard it through the grapevine? ABA and sugar cross-talk: the ASR storyTrends Plant Sci.95759PubMedCrossRefGoogle Scholar
  28. Catala, C, Rose, JKC, Bennett, AB 2000Auxin-regulated genes encoding cell wall–modifying proteins are expressed during early tomato fruit growthPlant Physiol122527534PubMedPubMedCentralCrossRefGoogle Scholar
  29. Catala, C, Rose, JKC, Bennett, AB 1997Auxin regulation and spatial localization of an endo-14-b-d-glucanase and a xyloglucan endotransglycosylase in expanding tomato hypocotylsPlant J12417426PubMedCrossRefGoogle Scholar
  30. Chao, WS, Gu, YQ, Pautot, V, Bray, EA, Walling, LL 1999Leucine aminopeptidase RNAs, proteins, and activities increase in response to water deficit, salinity, and the wound signals systemin, methyl jasmonate, and abscisic acidPlant Physiol120979992PubMedPubMedCentralCrossRefGoogle Scholar
  31. Chen, F, Bradford, KJ 2000Expression of an expansin is associated with endosperm weakening during tomato seed germinationPlant Physiol12412651274PubMedPubMedCentralCrossRefGoogle Scholar
  32. Chen, F, Nonogaki, H, Bradford, KJ 2002A gibberellin-regulated xyloglucan endotransglycosylase gene is expressed in the endosperm cap durin tomato seed germinationJ Exp Bot53215223PubMedCrossRefGoogle Scholar
  33. Ciardi, JA, Tieman, DM, Lund, ST, Jones, JB, Stal, RE, others,  2000Response to Xanthomonas campestris pv. Vesicatoria in tomato involves regulation of ethylene receptor gene expressionPlant Physiol1238192PubMedPubMedCentralCrossRefGoogle Scholar
  34. Cohen SS. 1998. A guide to the polyamines. New York, USA, Oxford University PressGoogle Scholar
  35. Cohen E, Arad SM, Heimer YM, Mizrahi Y. 1982. Participation of ornithine decarboxylase in early stages of tomato fruit development, Plant Physiol 70:540–543PubMedPubMedCentralCrossRefGoogle Scholar
  36. Cong, B, Liu, J, Tanksley, SD 2002Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutationsProc Natl Acad Sci USA991360613611PubMedPubMedCentralCrossRefGoogle Scholar
  37. Crane, J 1964Growth substances in fruit setting and developmentAnnu Rev Plant Physiol15303326CrossRefGoogle Scholar
  38. Crane JC. 1969. The role of hormones in fruit set and development. Hort Sci 4:108–111Google Scholar
  39. Creelman, RA, Mullet, JE 1997Biosynthesis and action of jasmonates in plantsAnnu Rev Plant Physiol Plant Mol Biol48355381PubMedCrossRefGoogle Scholar
  40. Desai N, Chism GW. 1978. Changes in cytokinin activity in the ripening tomato fruit. J Food Sci 43:1324–1326CrossRefGoogle Scholar
  41. Dibble ARG, Davies P, Mutschler MA.1988. Polyamine content of long-keeping Alcobaca tomato fruit. Plant Physiol 86:338–340PubMedPubMedCentralCrossRefGoogle Scholar
  42. Forsburg, SL, Nurse, P 1991Cell cycle regulation in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombeAnnu Rev Cell Biol7227256PubMedCrossRefGoogle Scholar
  43. Fos, M, Nuez, F, García-Martínez, JL 2000The pat-2 gene which induces natural parthenocarpy alters the gibberellin content in unpollinated tomato ovariesPlant Physiol122471479PubMedPubMedCentralCrossRefGoogle Scholar
  44. Fos, M, Nuez, F 1996Molecular expression of genes involved in parthenocarpic fruit set in tomatoPhysiol Plant98165171CrossRefGoogle Scholar
  45. Fos, M, Proaño, K, Alabadí, D, Nuez, F, Carbonell, J, and others,  2003Polyamine metabolism is altered in unpollinated parthenocarpic pat-2 tomato ovariesPlant Physiol131359366PubMedPubMedCentralCrossRefGoogle Scholar
  46. Fos, M, Proaño, K, Nuez, F, García-Martínez, JL 2001Role of gibberellins in parthenocarpic fruit development induced by the genetic system pat-3/pat-4 in tomatoPhysiol Plant111545550PubMedCrossRefGoogle Scholar
  47. George WL, Scott JW, Splittstoesser WE. 1984. Parthenocarpy in tomato. Hort Rev 6:65–84Google Scholar
  48. Gillaspy, G, Ben-David, H, Gruissem, W 1993Fruits: A developmental perspectivePlant Cell514391451PubMedPubMedCentralCrossRefGoogle Scholar
  49. Giovannoni, J 2001Molecular biology of fruit maturation and ripeningAnnu Rev Plant Physiol Plant Mol Biol52729752CrossRefGoogle Scholar
  50. Giovannoni, J 2004Genetic regulation of fruit development and ripeningPlant Cell16S170S180PubMedPubMedCentralCrossRefGoogle Scholar
  51. Godt, DE, Roitsch, T 1997Regulation and tissue-specific distribution of mRNAs for three extracellular invertase isoenzymes of tomato suggests an important function in establishing and maintaining sink metabolismPlant Physiol115273282PubMedPubMedCentralCrossRefGoogle Scholar
  52. Goetz, M, Godt, DE, Roitsch, T 2000Tissue-specific induction of the mRNA for an extracellular invertase isoenzyme of tomato by brassinosteroids suggests a role for steroid hormones in assimilate partitioningPlant J22515522PubMedCrossRefGoogle Scholar
  53. Groot SPC, Bruinsma J, Karssen CM. 1987. The role of endogenous gibberellin in seed and fruit development of tomato: studies with a gibberellin-deficient mutant. Physiol Plant 71:184–190CrossRefGoogle Scholar
  54. Groot SPC, Karssen CM. 1992. Dormancy and germination of abscisic acid-deficient tomato seeds. Plant Physiol 99:952–958PubMedPubMedCentralCrossRefGoogle Scholar
  55. Guilfoyle, T, Hagen, G, Ulmasov, T, Murfett, J 1998How does auxin turn on genes?Plant Physiol118341347PubMedPubMedCentralCrossRefGoogle Scholar
  56. Gustafson FG. 1936. Inducement of fruit development by growth promoting chemicals. Proc Natl Acad Sci USA 22:628–636PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hackett, RM, Ho, CW, Lin, Z, Foote, HCC, Fray, RG,  et al. 2000Antisense inhibition of the Nr gene restores normal ripening to the tomato never-ripe mutant consistent with the ethylene receptor inhibition modelPlant Physiol12410791085PubMedPubMedCentralCrossRefGoogle Scholar
  58. Halford NG, Bouly JP, Thomas M. 2000. SNF1-related protein kinases (SnRKs): regulators at the heart of the control of carbon metabolism and partitioning. Adv Bot Res 32:405–434CrossRefGoogle Scholar
  59. Halford, NG, Hardie, DG 1998SNF1-related protein kinases: global regulators of carbon catabolism in plants?Plant Mol Biol37735748PubMedCrossRefGoogle Scholar
  60. Halford, NG, Hey, S, Jhurreea, D, Laurie, S, McKibbin, RS,  et al. 2003Metabolic signaling and carbon partitioning: role for Snf1-related (SnRK1) protein kinaseJ Exp Bot54467475PubMedCrossRefGoogle Scholar
  61. Himmelbach, A, Yang, YY, Grill, E 2003Relay and control of abscisic acid signalingCurr Opin Plant Biol6470479PubMedCrossRefGoogle Scholar
  62. Ho LC, Hewitt JD.1986. Fruit development. In: Atherton JG, Rudich J (eds), The tomato crop: a scientific basis for improvement. Cambridge, UK, Cambridge University Press; Chapman and Hall Ltd., pp 201–240CrossRefGoogle Scholar
  63. Ho LC. 1996. Tomato. In: Zamki E, Shaffer AA (eds), Photoassimilate distribution in plant and crops. New York, USA, Marcel Dekker, pp 709–772Google Scholar
  64. Imanishi S, Nagata M. 2003. The effect of methyl jasmonate on expression of the genes involved in ethylene biosynthesis in tomato fruits. Abst. 169. American Society of Plant Biologists, Plant Biology 2003: July 25–July 30, 2003, Honolulu, Hawaii, USAGoogle Scholar
  65. Iusem, ND, Bartholomew, DM, Hitz, WD, Scolnik, PA 1993Tomato (Lycopersicon esculentum) transcript induced by water deficit and ripeningPlant Physiol10213531354PubMedPubMedCentralCrossRefGoogle Scholar
  66. Jacobsen, SE, Olszewski, NE 1996Gibberellins regulate the abundance of RNAs with sequence similarity to proteinase inhibitors dioxygenases and dehydrogenasesPlanta1987886PubMedCrossRefGoogle Scholar
  67. Jones, B, Frasse, P, Olmos, E, Zegzouti, H, Li, ZG,  et al. 2002Down-regulation of DR12 an auxin-response-factor homolog in the tomato results in a pleiotropic phenotype including dark green and blotchy ripening fruitPlant J32603613PubMedCrossRefGoogle Scholar
  68. Joubès, J, Lemaire-Chamley, M, Delmas, F, Walter, J, Hernould, M,  et al. 2001A new C-type cyclin-dependent kinase from tomato expressed in dividing tissues does not interact with mitotic and G1 cyclinsPlant Physiol12614031415PubMedPubMedCentralCrossRefGoogle Scholar
  69. Joubès, J, Phan, TH, Just, D, Rothan, C, Bergounioux, C,  et al. 1999Molecular and biochemical characterization of the involvement of cyclin-dependent kinase A during the early development of tomato fruitPlant Physiol121857869PubMedPubMedCentralCrossRefGoogle Scholar
  70. Karssen CM, Haigh A, van der Toorn P, Weges R.1989. In: Taylorson RB, editor. Physiological mechanisms involved in seed priming. Recent advances in the development and germination of seeds. New York, USA, Plenum Press, p 269–280Google Scholar
  71. Kende,  1993Ethylene biosynthesisAnnu Rev Plant Physiol Plant Mol Biol44283307CrossRefGoogle Scholar
  72. Klee, H 2004Ethylene signal transduction. Moving beyond ArabidopsisPlant Physiol135660667PubMedPubMedCentralCrossRefGoogle Scholar
  73. Klee, H 2002Control of ethylene-mediated processes in tomato at the level of receptorsJ Exp Bot5320572063PubMedCrossRefGoogle Scholar
  74. Klee, H, Tieman, D 2002The tomato ethylene receptor gene family: form and functionPhysiol Plant115336341PubMedCrossRefGoogle Scholar
  75. Koka, CV, Cerny, RE, Gardner, RG, Noguchi, T, Fujioka, S,  et al. 2000A putative role for the tomato genes DUMPY and CURL-3 in brassinosteroid biosynthesis and responsePlant Physiol1228598PubMedPubMedCentralCrossRefGoogle Scholar
  76. Koornneef, M, Bosma, TDG, Hanhart, CJ, Veen, JH, Zeevaart, JAD 1990The isolation and characterization of gibberellin-deficient mutants in tomatoTheor Appl Genet80852857PubMedCrossRefGoogle Scholar
  77. Koshioka M, Nishijima T, Yamazaki H, Nonaka M, Mander LN. 1994. Analysis of gibberellins in growing fruits of Lycopersicon esculentum after pollination or treatment with 4-chlorophenoxyacetic acid. J Hort Sci 69:171–179Google Scholar
  78. Kvarnheden, A, Yao, JL, Zhan, X, O’Brien, I, Morris, BAM 2000Isolation of three distinct CycD3 genes expressed during fruit development in tomatoJ Exp Bot5117891797PubMedCrossRefGoogle Scholar
  79. Lacheene ZAES, El-Beltagy AS. 1986. Tomato fruit growth pattern and endogenous ethylene, indoleacetic acid and abscisic acid under normal and stress conditions. Acta Hort 190:325–338Google Scholar
  80. Lanahan, MB, Yen, HC, Giovannoni, JJ, Klee, HJ 1994The Never ripe mutation blocks ethylene perception in tomatoPlant Cell6521530PubMedPubMedCentralCrossRefGoogle Scholar
  81. LeClercq, J, Adams-Phillips, L, Zegzouti, H, Jones, B, Latche, A,  et al. 2002LECTR1, a tomato CTR1-like gene, demonstrates ethylene signaling ability in Arabidopsis and novel expression patterns in tomatoPlant Physiol13011321142PubMedPubMedCentralCrossRefGoogle Scholar
  82. Lee, JT, Prasad, V, Yang, PT, Wu, JF, David Ho, TH,  et al. 2003Expression of Arabidopsis CBF1 regulated by an ABA/stress inducible promoter in transgenic tomato confers stress tolerance without affecting yieldPlant Cell Environ2611811190CrossRefGoogle Scholar
  83. Lelièvre, JM, Latché, A, Jones, B, Bouzayen, M, Pech, JC 1998Ethylene and fruit ripeningPhysiol Plant101727739CrossRefGoogle Scholar
  84. Li, N, Parsons, BL, Liu, DR, Mattoo, AK 1992Accumulation of wound-inducible ACC synthase transcript in tomato fruit is inhibited by salicylic acid and polyaminesPlant Mol Biol18477487PubMedCrossRefGoogle Scholar
  85. Lisso J, Altmann T. 2003. The effect of BR’s on ripening and composition of the tomato fruit. Abstract. American Society of Plant Biologists, Plant Biology 2003: July 25–July 30, 2003, Honolulu, Hawaii USAGoogle Scholar
  86. Liu, Y, Schiff, M, Dinesh-Kumar, SP 2002Virus-induced gene silencing in tomatoPlant J.31777786PubMedCrossRefGoogle Scholar
  87. Liu YQ, Luo ZM, Hilhorst HWM, Karssen CM. 1996. Effects of endogenous GA and ABA on water relations in tomato fruit and seeds during development. Acta Phytophysiol Sinica 22:19–26Google Scholar
  88. Lu, C, Zainal, Z, Tucker, GA, Lycett, GW 2001Developmental abnormalities and reduced fruit softening in tomato plants expressing an antisense Rab11 GTPase genePlant Cell1318191833PubMedPubMedCentralCrossRefGoogle Scholar
  89. Lunn, JE, MacRae, E 2003New complexities in the synthesis of sucroseCurr Opin Plant Biol6208214PubMedCrossRefGoogle Scholar
  90. Mapelli S, Frova C, Tort G, Soressi G. 1978. Relationship between set development and activities of growth regulators in tomato fruit. Plant Cell Physiol 19:1281–1288Google Scholar
  91. Mapelli, S 1981Changes in cytokinin in the fruits of parthenocarpic and normal tomatoesPlant Sci Lett22227233CrossRefGoogle Scholar
  92. Martineau, B, Houck, CM, Sheehy, RE, Hiatt, WR 1994 Fruit-specific expression of the A. tumefaciens isopentenyl transferase gene in tomato: effects on fruit ripening and defence-related gene expression in leavesPlant J51119CrossRefGoogle Scholar
  93. Martineau, B, Summerfelt, KR, Adams, DF, DeVerna, JW 1995Production of high solids tomatoes through molecular modification of levels of the plant growth regulator cytokininBiotechnology13250254CrossRefGoogle Scholar
  94. Maskin, L, Gubesblat, GE, Moreno, JE, Carrari, FO, Frankel, N, and others,  2001Differential expression of the members of the Asr gene family in tomato (Lycopersicon esculentum)Plant Sci161739746CrossRefGoogle Scholar
  95. Mazzucato, A, Olimpieri, I, Ciampolini, F, Cresti, M, Soressi, GP 2003A defective pollen–pistil interaction contributes to hamper seed set in the parthenocarpic fruit tomato mutantSex Plant Reprod16157164CrossRefGoogle Scholar
  96. Mazzucato, A, Taddei, AR, Soressi, GP 1998The parthenocarpic fruit (pat) mutant of tomato (Lycopersicon esculentum Mill) sets seedless fruits and has aberrant anther and ovule developmentDevelopment125107114PubMedGoogle Scholar
  97. Mehta, RA, Cassol, T, Li, N, Ali, N, Handa, AK,  et al. 2002Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine lifeNat Biotechnol20613618PubMedCrossRefGoogle Scholar
  98. Morgan, DO 1995Principles of CDK regulationNature374131134PubMedCrossRefGoogle Scholar
  99. Muday, GK, Lomax, TL, Rayle, DL 1995Characterization of the growth and auxin physiology of roots of the tomato mutant, diageotropicaPlanta195548553PubMedCrossRefGoogle Scholar
  100. Nebenfuhr, A, White, TJ, Lomax, TL 2000The diageotropica mutation alters auxin induction of a subset of the Aux/IAA gene family in tomatoPlant Mol Biol447384PubMedCrossRefGoogle Scholar
  101. Nuez F, Costa J, Cuartero J 1986. Genetics of the parthenocarpy for tomato variety “Sub-Arctic plenty,” “75/59,” and “Severianin.” Z Pflanzenzuchtg 96:200–206Google Scholar
  102. Nigg, EA 1995Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycleBioessays17471480PubMedCrossRefGoogle Scholar
  103. Nitsch JP. 1970. Hormonal factors in growth and development In: Hulme AC (ed), The biochemistry of fruits and their products. London, UK, Academic Press, pp 427–472Google Scholar
  104. Nitsch JP. 1971. Perennation through seeds and other structures: fruit development. In: Steward FC (ed), Plant physiology, a treatise, vol 6A. London, UK, Academic Press, pp 413–501Google Scholar
  105. Norbury, C, Nurse, P 1992Animal cell cycles and their controlAnnu Rev Biochem61441470PubMedCrossRefGoogle Scholar
  106. Oeller, PW, Min-Wong, L, Taylor, L, Pike, D, Theologis, A 1991Reversible inhibition of tomato fruit senescence by antisense RNAScience254437439PubMedCrossRefGoogle Scholar
  107. Oeller, PW, Theologis, A 1995Induction kinetics of the nuclear proteins encoded by the early indoacetic acid-inducible genes, PS-IAA4/5 and PS-IAA6, of pea (Pisium sativum L.)Plant J73748PubMedCrossRefGoogle Scholar
  108. Ozga, JA, Reinecke, DM 2003Hormonal interactions in fruit developmentJ Plant Growth Regul227381CrossRefGoogle Scholar
  109. Picton S, Barton SL, Bouzayen M, Hamilton AJ, Grierson D. 1993. Altered fruit ripening and leaf senescence in tomatoes expressing an antisense ethylene-forming enzyme transgene. Plant J 3:469–481CrossRefGoogle Scholar
  110. Proels, RK, Hause, B, Berger, S, Roitsch, T 2003Novel mode of hormone induction of tandem tomato invertase genes in floral tissuesPlant Mol Biol52191201PubMedCrossRefGoogle Scholar
  111. Rebers, M, Kaneta, T, Kawaide, H, Yamaguchi, S, Yang, YY, and others,  1999Regulation of gibberellin biosynthesis genes during flower and early fruit development of tomatoPlant J17241250PubMedCrossRefGoogle Scholar
  112. Redman, AM, Cipollini, DF,Jr, Schultz, JC 2001Fitness costs of jasmonic acid–induced defense in tomato Lycopersicon esculentumOecologia126380385CrossRefGoogle Scholar
  113. Reed, JW 2001Roles and activities of Aux/IAA proteins in ArabidopsisTrends Plant Sci6420425PubMedCrossRefGoogle Scholar
  114. Renaudin, J-P, Doonan, JH, Freeman, D, Hashimoto, J, Hirt, H, and others,  1996Plant cyclins: a unified nomenclature for plant A-, B- and D-type cyclins based on sequence organizationPlant Mol Biol3210031018PubMedCrossRefGoogle Scholar
  115. Rice, MS, Lomax, T 2000The auxin-resistant diageotropica mutant of tomato responds to gravity via an auxin-mediated pathwayPlanta210906913PubMedCrossRefGoogle Scholar
  116. Roitsch, T, Ehneß, R 2000Regulation of source/sink relations by cytokininsPlant growth Regul.32359367CrossRefGoogle Scholar
  117. Rose, JKC, Cosgrove, DJ, Albersheim, P, Darvill, AG, Bennett, AB 2000Detection of expansin proteins and activity during tomato fruit ontogenyPlant Physiol12315831592PubMedPubMedCentralCrossRefGoogle Scholar
  118. Rose, JKC, Lee, HH, Bennett, AB 1997Expression of a divergent expansin gene is fruit-specific and ripening-regulatedProc Natl Acad Sci USA9459555960PubMedPubMedCentralCrossRefGoogle Scholar
  119. Rossi, M, Iusem, ND 1994Tomato (Lycopersicon esculentum) genomic clone homologous to a gene encoding an abscisic acid-induced proteinPlant Physiol.10410731074PubMedPubMedCentralCrossRefGoogle Scholar
  120. Sanderfoot, AA, Raikhel, NV 1999The specificity of vesicle trafficking: coat proteins and SNAREs:Plant Cell11629642PubMedPubMedCentralCrossRefGoogle Scholar
  121. Sastry KKS, Muir RM. 1963. Gibberellin: effect on diffusible auxin in fruit development. Science 140:494–495PubMedCrossRefGoogle Scholar
  122. Sharp RE, LeNoble ME, Else MA, Thorne ET, Gherardi F. 2000. Endogenous ABA maintains shoot growth in tomato independently of effects on plant water balance: evidence for an interaction with ethylene. J Exp Bot 51:1575–1584PubMedCrossRefGoogle Scholar
  123. Sheng J, Ye J, Shen L, Luo Y. 2003. Effect of lipoxygenase and jasmonic acid on ethylene biosynthesis during tomato fruit ripening. Acta Hort 20:119–125CrossRefGoogle Scholar
  124. Sjut V, Bangerth F. 1982. Induced parthenocarpy: a way of changing the levels of endogenous hormones in tomato fruits (Lycopersicon esculentum Mill.): 1. Extractable hormones. Plant Growth Regul 1:243–251Google Scholar
  125. Sun, W, Kieliszewski, MJ, Showalter, AM 2004Overexpression of tomato LeAGP-1 arabinogalactan-protein promotes lateral branching and hampers reproductive developmentPlant J40870881PubMedCrossRefGoogle Scholar
  126. Takai, Y, Sasaki, T, Matozati, T 2001Small GTP-binding proteinsPhysiol Rev81153185PubMedGoogle Scholar
  127. Testa, G, Caccia, R, Tilesi, F, Soressi, G, Mazzucato, A 2002Sequencing and characterization of tomato genes putatively involved in fruit set and early developmentSexual Plant Rep14269277CrossRefGoogle Scholar
  128. Theologis, A 1992One rotten apple spoils the whole bushel: the role of ethylene in fruit ripeningCell70181184PubMedCrossRefGoogle Scholar
  129. Thompson, AJ, Tor, M, Barry, CS, Verbalov, J, Orfila, C, and others,  1999Molecular and genetic characterization of a novel plieotropic tomato-ripening mutantPlant Physiol120383389PubMedPubMedCentralCrossRefGoogle Scholar
  130. Tieman, DM, Ciardi, JA, Taylor, MG, Klee, HJ 2001Members of the tomato LeEIL (EIN3-like) gene family are functionally redundant and regulate ethylene responses throughout plant developmentPlant J264758PubMedCrossRefGoogle Scholar
  131. Tieman, DM, Taylor, MG, Ciardi, JA, Klee, HJ 2000The tomato ethylene receptors NR and LeETR4 are negative regulators of ethylene response and exhibit functional compensation within a multigene familyProc Natl Acad Sci USA9756635668PubMedPubMedCentralCrossRefGoogle Scholar
  132. Tigchelaar EC, McGlasson WB, Buescher RW.1978. Genetic regulation of tomato fruit ripening. Hort Sci 13:508–513Google Scholar
  133. Tournier, B, Sanchez-Ballesta, MT, Jones, B, Pesquet, E, Regad, F,  et al. 2003New members of the tomato ERF family show specific expression pattern and diverse DNA-binding capacity to GCC box elementFEBS Lett550149154PubMedCrossRefGoogle Scholar
  134. Valero, D, Martinez-Romero, D, Serrano, M 2002The role of polyamines in the improvement of the shelf life of fruitTrends Food Sci Tech13228234CrossRefGoogle Scholar
  135. van den Heuvel, KJ, Hulzink, JM, Barendse, GW, Wullems, GJ 2001The expression of tgas118, encoding a defensin in Lycopersicon esculentum, is regulated by gibberellinJ Exp Bot5214271436PubMedCrossRefGoogle Scholar
  136. Heuvel, KJPT, Esch, RJ, Barendse, GWM, Wullems, GJ 1999Isolation and molecular characterization of gibberellin-regulated H1 and H2B histone cDNAs in the leaf of a gibberellin-deficient tomatoPlant Mol Biol39883890PubMedCrossRefGoogle Scholar
  137. Heuvel, KJPT, Lipzig, RH, Barendse, GW, Wullems, GJ 2002Regulation of expression of two novel flower-specific genes from tomato (Solanum lycopersicum) by gibberellinJ Exp Bot535159PubMedCrossRefGoogle Scholar
  138. Vardhini, VB, Rao, SS 2002Acceleration of ripening of tomato pericarp discs by brassinosteroidsPhytochem61843847CrossRefGoogle Scholar
  139. Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, others. 2002. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin).locus Science. 296:342–346Google Scholar
  140. Walters, DR 2003Polyamines and plant diseasePhytochemistry6497107PubMedCrossRefGoogle Scholar
  141. Wilkinson, J, Lanahan, M, Yen, H, Giovannoni, J, Klee, H 1995An ethylene-inducible component of signal transduction encoded by Never-ripeScience27018071809PubMedCrossRefGoogle Scholar
  142. Yang, SF, Hoffman, NE 1984Ethylene biosynthesis and its regulation in higher plantsAnnu Rev Plant Physiol35155189CrossRefGoogle Scholar
  143. Yen, H, Lee, S, Tanksley, S, Lanahan, M, Klee, H,  et al. 1995The tomato Never-ripe locus regulates ethylene-inducible gene expression and is linked to a homologue of the Arabidopsis ETR1 genePlant Physiol10713431353PubMedPubMedCentralCrossRefGoogle Scholar
  144. Yokotani, N, Tamura, S, Nakano, R, Inaba, A, Kubo, Y 2003Characterization of a novel tomato EIN3-like gene (LeEIL4)J Exp Bot5427752776PubMedCrossRefGoogle Scholar
  145. Zainal, Z, Tucker, GA, Lycett, GW 1996A rab11-like gene is developmentally regulated in ripening mango (Mangifera indica L.) fruitBiochim Biophys Acta1314187190PubMedCrossRefGoogle Scholar
  146. Zobel, RW 1972Genetics of the diageotropica mutant in the tomatoJ Hered639197Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteUSA

Personalised recommendations