Advertisement

Mammalian Genome

, Volume 16, Issue 1, pp 11–19 | Cite as

Origins of mouse inbred strains deduced from whole-genome scanning by polymorphic microsatellite loci

  • Takahiro Sakai
  • Yoshiaki Kikkawa
  • Ikuo Miura
  • Takeshi Inoue
  • Kazuo Moriwaki
  • Toshihiko Shiroishi
  • Yoko Satta
  • Naoyuki Takahata
  • Hiromichi YonekawaEmail author
Original Contributions

Abstract

Microsatellite loci are uniformly distributed at approximately 100-kbp intervals on all chromosomes except the chromosome Y, and genetic information about more than 9000 loci and high-throughput polymorphism analysis are now available. Taking advantage of these properties, we carried out whole-genome scanning using eight common inbred strains (CIS) of laboratory mice, including A/J, C57BL/6J, CBA/J, DBA/2J, SM/J, SWR/J, NC/Nga, and 129/SvJ, and eight wild-derived inbred strains (WIS), BGL2/Ms, CAST/Ei, JF1/Ms, MSM/Ms, NJL/Ms, PGN2/Ms, SK/CamEi, and SWN/Ms. We selected and located 1226 informative loci at 1.2-cM average intervals on all of the chromosomes of the 16 strains and compared the polymorphisms of the eight CIS with those from the eight WIS as subspecies representatives. More than 50% of the loci can be identified as WIS (therefore, subspecies-specific) alleles in the CIS genomes. We also discovered that the CIS chromosomes form a mosaic structure with an average ratio of domesticus to non-domesticus alleles of 3:1. Furthermore, the domesticus alleles were present much more frequently on the CIS chromosome X than on their autosomes, suggesting that successive backcrossing of non-domesticus stocks to domesticus stocks had been undergone at the beginning of CIS history

Keywords

Microsatellite Locus Inbred Strain Mosaic Structure Microsatellite Polymorphism Polymorphism Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Ms. Yumi Nishiyama, Yayoi Wakita, and Satomi Yamada of the Tokyo Metropolitan Institute of Medical Science, and Ms. Kyoko Takada and Mr. Akihiko Mita of the National Institute of Genetics for technical assistance. This work was partially supported by the Special Coordination Funds for Promoting Science and Technology of the Science and Technology Agency, Japan. This study is contribution No. 2500 from the National Institute of Genetics, Japan.

References

  1. Beck, JA, Lloyd, S, Hafezparast, M, Lennon–Pierce, M, Eppig, JT,  et al. 2000Genealogies of mouse inbred strainsNat Genet242325Google Scholar
  2. Bishop, CE, Boursot, P, Baron, B, Bonhomme, F, Hatat, D 1985Most classical Mus musculus domesticus laboratory mouse strains carry a Mus musculus musculus Y chromosomeNature3157072CrossRefGoogle Scholar
  3. Bonhomme, F, Catalan, J, Britton–Davidian, J, Chapman, VM, Moriwaki, K,  et al. 1984Biochemical diversity and evolution in the genus MusBiochem Genet22275303CrossRefGoogle Scholar
  4. Dietrich, W, Katz, H, Lincoln, SE, Shin, HS, Friedman, J,  et al. 1992A genetic map of the mouse suitable for typing intraspecific crossesGenetics131423447Google Scholar
  5. Ferris, SD, Sage, RD, Wilson, AC 1982Evidence from mtDNA sequences that common laboratory strains of inbred mice are descended from a single femaleNature295163165CrossRefGoogle Scholar
  6. Hickman, CG 1991World Animal Science, B7, Cattle Genetic ResourcesElsevierAmsterdamGoogle Scholar
  7. Jarne, P, David, P, Viard, F 1998Microsatellites, transposable elements and the X chromosomeMol Biol Evol152834Google Scholar
  8. Keeler, CE 1931The Laboratory Mouce, Its Origins, Heredity, and CultureHarvard University PressCambridge, MassGoogle Scholar
  9. Kikkawa, Y, Miura, I, Takahama, S, Wakana, S, Yamazaki, Y,  et al. 2001Microsatellite database for MSM/Ms and JF1/Ms, molossinus-derived inbred strainsMamm Genome12750752CrossRefGoogle Scholar
  10. Kikkawa, Y, Takada, T, Sutopo, , Nomura, K, Namikawa, T,  et al. 2003Phylogenies using mtDNA and SRY provide evidence for male-mediated introgression in Asian domestic cattleAnim Genet3496101CrossRefGoogle Scholar
  11. Love, JM, Knight, AM, McAleer, MA, Todd, JA 1990Towards construction of a high resolution map of the mouse genome using PCR-analysed microsatellitesNucleic Acids Res2541234130Google Scholar
  12. Marshall, JT 1981TaxonomyFoster, HLSmall, JDFox, JG eds. The Mouse in Biomedical Research, Vol. 1Academic PressNew York1726Google Scholar
  13. McVean, GT, Hurst, LD 1997Evidence for a selectively favorable reduction in the mutation rate of the X chromosomeNature386388392CrossRefGoogle Scholar
  14. Moriwaki, K, Shiroishi, T, Minezawa, M, Aotsuka, T, Kondo, K 1979Frequency distribution of histocompatibility-2 antigenic specificities in the Japanese wild mouse genetically remote from the European subspeciesImmunogenetics699113Google Scholar
  15. Moriwaki, K, Shiroishi, T, Yonekawa, H 1994Genetics in Wild Mice, Its Application to Biomedical ResearchJapan Scientific Societies Press, KargerTokyo, BaselGoogle Scholar
  16. Morse, HC,III 1978Origins of Inbred MiceAcademic PressNew YorkGoogle Scholar
  17. Nagamine, CM, Nishioka, Y, Moriwaki, K, Boursot, P, Bonhomme, F,  et al. 1992The musculus-type Y chromosome of the laboratory mouse is of Asian originMamm Genome38491CrossRefGoogle Scholar
  18. Saitou, N, Nei, M 1987The neighbor-joining method: a new method for reconstructing phylogenetic treesMol Biol Evol.4406425Google Scholar
  19. Sakai, T, Miura, I, Yamada–Ishibashi, S, Wakita, Y, Kohara, Y,  et al. 2004Update of mouse microsatellite database of Japan (MMDBJ)Exp Anim53151154CrossRefGoogle Scholar
  20. Schalkwyk, LC, Jung, M, Daser, A, Weiher, M, Walter, J,  et al. 1999Panel of microsatellite markers for whole-genome scans and radiation hybrid mapping and a mouse family treeGenome Res9878887CrossRefGoogle Scholar
  21. Schwarz, E, Schwarz, H 1943The wild and commensal stocks of the house mouse, Mus musculus LinnaeusJ Mammal245972Google Scholar
  22. Suzuki, H, Miyashita, N, Moriwaki, K, Kominami, R, Muramatsu, M,  et al. 1986Evolutionary implication of heterogeneity of the nontranscribed spacer region of ribosomal DNA repeating units in various subspecies of Mus musculusMol Biol Evol3126137Google Scholar
  23. Tucker, PK, Lee, BK, Lundrigan, BL, Eicher, EM 1992Geographic origin of the Y chromosomes in “old” inbred strains of miceMamm Genome3254261CrossRefGoogle Scholar
  24. Wade, CM, Kulbokas, EJ,3rd, Kirby, AW, Zody, MC, Mullikin, JC,  et al. 2002The mosaic structure of variation in the laboratory mouse genomeNature420574578CrossRefPubMedGoogle Scholar
  25. Wiltshire, T, Pletcher, MT, Batalov, S, Barnes, SW, Tarantino, LM,  et al. 2003Genome-wide single-nucleotide polymorphism analysis defines haplotype patterns in mouseProc Natl Acad Sci USA10033803385CrossRefGoogle Scholar
  26. Witmer, PD, Doheny, KF, Adams, MK, Boehm, CD, Dizon, JS,  et al. 2003The development of a highly informative mouse simple sequence length polymorphism (SSLP) marker set and construction of a mouse family tree using parsimony analysisGenome Res13485491CrossRefGoogle Scholar
  27. Yonekawa, H, Moriwaki, K, Gotoh, O, Hayashi, JI, Watanabe, J,  et al. 1980Relationship between laboratory mice and the subspecies Mus musculus domesticus based on restriction endonuclease cleavage patterns of mitochondrial DNAJpn J Genet55289296Google Scholar
  28. Yonekawa, H, Moriwaki, K, Gotoh, O, Miyashita, N, Migita, S,  et al. 1982Origins of laboratory mice deduced from restriction patterns of mitochondrial DNADifferentiation22:222226Google Scholar
  29. Yonekawa, H, Moriwaki, K, Gotoh, O, Miyashita, N, Matsushima, Y,  et al. 1988Hybrid origin of Japanese mice “Mus musculus molossinus”: evidence from restriction analysis of mitochondrial DNAMol Biol Evol16378Google Scholar
  30. Yonekawa, H, Takahama, S, Gotoh, O, Miyashita, N, Moriwaki, K 1994Genetic diversity and geographic distribution of Mus musculus subspecies based on the polymorphism of mitochondrial DNAMoriwak, KShiroishi, TYonekawa, H eds. Genetics in Wild Mice: Its Application to Biomedical ResearchJapan Scientific Press, KargerTokyo, Basel2540Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Takahiro Sakai
    • 1
    • 2
  • Yoshiaki Kikkawa
    • 1
  • Ikuo Miura
    • 1
    • 6
  • Takeshi Inoue
    • 2
  • Kazuo Moriwaki
    • 3
  • Toshihiko Shiroishi
    • 4
  • Yoko Satta
    • 5
  • Naoyuki Takahata
    • 5
  • Hiromichi Yonekawa
    • 1
    Email author
  1. 1.Department of Laboratory Animal ScienceThe Tokyo Metropolitan Institute of Medical Science (Rinshoken)Japan
  2. 2.Department of Zootechnical ScienceTokyo University of AgricultureJapan
  3. 3.Bio Resource CentreRIKEN Tsukuba InstituteJapan
  4. 4.Mammalian Genetics LaboratoryNational Institute of GeneticsJapan
  5. 5.The Graduate University for Advanced Studies (Sokendai)Japan
  6. 6.Genomic Sciences CenterRIKEN Yokohama InstituteJapan

Personalised recommendations