Journal of Plant Growth Regulation

, Volume 24, Issue 2, pp 142–152 | Cite as

Transgenic Tomato Plants with a Modified Ability to Synthesize Indole-3-acetyl-β-1-O-D -glucose

  • Mridula Iyer
  • Janet P. SlovinEmail author
  • Ephraim Epstein
  • Jerry D. Cohen


Esterification of indole-3-acetic acid (IAA) is thought to be an important component in the homeostatic regulation of the levels of this phytohormone. To better understand the role of the initial step in IAA esterification in the control of IAA levels, transgenic tomato plants were generated that either express maize IAGLU or have reduced levels of the enzyme IAA-glucose synthetase. These plants were obtained by expressing maize IAGLU in either sense or antisense orientation using the CaMV35S promoter. The maize IAGLU probe hybridized to two transcripts (1.3 kb and 2.5 kb) in wild-type tomato vegetative tissue and green fruit. The sense and antisense transformants exhibited distinct phenotypic characteristics. Sense transformants showed an almost complete lack of root initiation and development. Antisense transgenic plants, on the other hand, had unusually well developed root systems at early stages in development, and the amount of the endogenous 75 kDa IAGLU protein was reduced. IAGLU antisense plants also had reduced levels of IAA-glucose and lower esterified IAA.


Auxin conjugation Glucosyltransferase Indoleacetyl-glucose Lycopersicon esculentum Phytohormone Transgenic tomato 



We thank Dr. Robert S. Bandurski, Michigan State University, for providing maize IAGLU and authorizing its use in our studies, and for helpful advice during the early stages of this work. We also thank Dr. Harry J. Swartz (University of Maryland, College Park) for his help with tomato grafting and Dr. M. Kowalczyk (Umeå, Sweden) for the gift of the two IAGLU antibodies. We thank Drs. Jennifer Normanly (University of Massachusetts) and Jutta Ludwig-Müller (TU-Universität, Dresden, Germany) for their critical reading of the manuscript and helpful comments. This paper is dedicated to the memory of our friend and colleague, Dr. Jedrzej B. Szerszen, who cloned maize IAGLU, thus making the current work possible. This research was supported by U.S.–Israel Binational Research and Development (BARD) Fund grant US-2498-94, U.S. Department of Energy grant DE-FG02-00ER15079, and U.S. National Science Foundation grant IBN 0111530.


  1. Bandurski RS, Cohen JD, Slovin JP, Reinecke DM. 1995. Auxin biosynthesis and metabolism. In: Davies PJ (Ed.), Plant hormones: physiology, biochemistry and molecular biology, Kluwer, Dordrecht, The Netherlands, pp. 35–57Google Scholar
  2. Bartel, B 1997Auxin biosynthesisAnnu Rev Plant Physiol Plant Mol Biol485166CrossRefPubMedGoogle Scholar
  3. Bartel, B, Fink, GR 1995ILR1, an amidohydrolase that releases active indole-3-acetic acid from conjugatesScience26817451748CrossRefPubMedGoogle Scholar
  4. Bird CR, Ray JA. 1991. Manipulation of plant gene expression by antisense RNA. Biotechnol Genet Engin Rev 9:207–227Google Scholar
  5. Bradford, MM 1976A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnal Biochem72248254CrossRefPubMedGoogle Scholar
  6. Catalá C, Östin A, Chamarro J, Sandberg G, Crozier A. 1992. Metabolism of indole-3-acetic acid by pericarp discs from immature and mature tomato (Lycopersicon esculentum Mill.). Plant Physiol 100:1457–1463CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen K-H, Miller AN, Patterson GW, Cohen JD. 1988. A rapid and simple procedure for purification of indole-3-acetic acid prior to GC-SIM-MS analysis. Plant Physiol 86:822–825CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chisnell, JR 1984Myo-inositol esters of indole-3-acetic acid are endogenous components of Zea mays L. shoot tissuePlant Physiol74278283CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chou, J-C, Mulbry, WW, Cohen, JD 1998The gene for indole-3-acetyl-L-aspartic acid hydrolase from Enterobacter agglomerans: molecular cloning, nucleotide sequence, and expression in Escherichia coliMol Gen Genet259172178CrossRefPubMedGoogle Scholar
  10. Cohen JD. 1982. Identification and quantitative analysis of indole-3-acetyl-L-aspartate from seeds of Glycine max L. Plant Physiol. 70: 749-753CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cohen JD. 1983. Metabolism of indole-3-acetic acid. What’s New Plant Physiol 14:41–44Google Scholar
  12. Cohen JD, Baldi BG, Slovin JP. 1986. 13C6-[Benzene ring]-indole-3-acetic acid: a new internal standard for quantitative mass spectral analysis of indole-3-acetic acid in plants. Plant Physiol 80:14–19CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cohen, JD, Bandurski, RS 1982Chemistry and physiology of the bound auxinsAnnu Rev Plant Physiol33403430CrossRefGoogle Scholar
  14. Cohen, JD, Ernstsen, A 1991Indole-3-acetic acid and indole-3-acetylaspartate isolated from Heracleum laciniatum HornPlant Growth Regul1095101CrossRefGoogle Scholar
  15. Domagalski, W, Schulze, A, Bandurski, RS 1987Isolation and characterization of esters of indole-3-acetic acid from the liquid endosperm of the horse chestnut (Aesculus species)Plant Physiol8411071113CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dellaporta SL, Wood J, Hicks JB. 1983. A plant DNA minipreparation: version II. Plant Mol Biol Report 1:19–21CrossRefGoogle Scholar
  17. Eguchi, Y 1991Antisense RNAAnnu Rev Biochem60631652CrossRefPubMedGoogle Scholar
  18. Jackson, RG, Lim, EK, Li, Y, Kowalczyk, M, Sandberg, G,  et al. 2001Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferaseJ Biol Chem27643504356CrossRefPubMedGoogle Scholar
  19. Jakas A, Magnus V, Horvat S, Sandberg G. 1993. Synthesis of β-D-glucosyl ester of [carbonyl-13C] indole-3-acetic acid. J. Labelled Compds Radiopharm. 33:933–941CrossRefGoogle Scholar
  20. Jakubowska, A, Kowalczyk, S 2004The auxin conjugate 1-O-indole-3-acetyl-β-D-glucose is synthesized in immature legume seeds by IAGlc synthase and may be used for modification of some high molecular weight compoundsJ Exp Bot55791801CrossRefPubMedGoogle Scholar
  21. King, JJ, Stimart, DP, Fisher, RH, Bleecker, AB 1995A mutation altering auxin homeostasis and plant morphology in ArabidopsisPlant Cell720232037CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kleczkowski K, Schell J. 1995. Phytohormone conjugates: nature and function. Crit Rev Plant Sci. 14:283–298CrossRefGoogle Scholar
  23. Kowalczyk M, Kowalczyk S, Bandurski RS. 1997. 1-O-Indol-3-ylacetyl-β-D-glucopyranoside (1-O-IAGlu) synthase is an inducible enzyme in maize coleoptiles (Abstract). Plant Physiol 114(S):62Google Scholar
  24. Leznicki AJ, Bandurski RS. 1988a. Enzymatic synthesis of indole-3-acetyl-1-O-□-D-glucose. I. Partial purification and characterization of the enzyme from Zea mays. Plant Physiol 88:1474–1480CrossRefGoogle Scholar
  25. Leznicki AJ, Bandurski RS. 1988b. Enzymatic synthesis of indole-3-acetyl-1-O-□-D-glucose. II. Metabolic characteristics of the enzyme. Plant Physiol 88:1481–1485CrossRefGoogle Scholar
  26. Matzke, M, Matzke, AJM, Kooter, JM 2001RNA: Guiding gene silencingScience29310801083CrossRefPubMedGoogle Scholar
  27. McCormick, S, Niedermeyer, J, Fry, J, Barnason, A, Horsch, R, and others,  1986Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciensPlant Cell Rep58184CrossRefPubMedGoogle Scholar
  28. Meier, BM, Shaw, N, Slusarenko, AJ 1993Spatial and temporal accumulation of defense gene transcripts in bean (Phaseolus vulgaris) leaves in relation to bacteria induced hypersensitive cell deathMol Plant-Microbe Interact6453466CrossRefPubMedGoogle Scholar
  29. Michalczuk, L, Bandurski, RS 1982Enzymatic synthesis of 1-O-indol-3-yl-acetyl-ß-D-glucose and indol-3-yl-acetyl-myo-inositolBiochem J207273281CrossRefPubMedPubMedCentralGoogle Scholar
  30. Michalczuk L, Chisnell JR. 1982. Enzymatic synthesis of 5-3H-indole-3-acetic acid and 5-3H-indole-3-acetyl-myo-inositol from 5-3H-L-tryptophan. J. Labeled Compd. Radiopharm. 19:121–128CrossRefGoogle Scholar
  31. Normanly, J 1997Auxin metabolismPhysiol Plant100431442CrossRefGoogle Scholar
  32. Normanly, J, Bartel, B 1999Redundancy as a way of life—IAA metabolismCurr Opin Plant Biol2207213CrossRefPubMedGoogle Scholar
  33. Normanly, J, Slovin, JP, Cohen, JD 1995Rethinking auxin biosynthesis and metabolismPlant Physiol107323329CrossRefPubMedPubMedCentralGoogle Scholar
  34. Oliver, MJ, Ferguson, DL, Burke, JJ, Velten, J 1993Inhibition of tobacco NADH-hydrxypyruvate reductase by expression of heterologous antisense RNA derived from cucumber cDNA: implications for the mechanism of action of antisense RNAsMol Gen Genet239425434CrossRefPubMedGoogle Scholar
  35. Ribnicky, DM, Cohen, JD, Hu, W-S, Cooke, TJ 2002An auxin surge following fertilization in carrot: a mechanism for regulating plant totipotencyPlanta214505509CrossRefPubMedGoogle Scholar
  36. Romano, CP, Hein, MB, Klee, HJ 1991Inactivation of auxin in tobacco transformed with the indoleacetic acid-lysine synthase gene of Pseudomonas savastanoiGenes Dev5438446CrossRefPubMedGoogle Scholar
  37. Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning, a laboratory manual. Cold Spring Harbor, NY, USA, Cold Spring Harbor Laboratory Press, 545 ppGoogle Scholar
  38. Slovin JP, Cohen JD. 1993. Auxin metabolism in relation to fruit ripening. Acta Hort 329:84–89. CrossRefGoogle Scholar
  39. Smith, CJS, Watson, CF, Morris, PC, Bird, CR, Seymoun, GB,  et al. 1990Inheritance and effect on ripening of antisense polygalacturonase genes in transgenic tomatoesPlant Mol Biol14369379CrossRefPubMedGoogle Scholar
  40. Staswick, PE, Serban, B, Rowe, M, Tiryaki, I, Maldonado, MT,  et al. 2005Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acidPlant Cell17616627CrossRefPubMedPubMedCentralGoogle Scholar
  41. Szerszen, JB, Szczyglowski, K, Bandurski, RS 1994iaglu, a gene from Zea mays involved in conjugation of the growth hormone indole-3-acetic acidScience26516991701CrossRefPubMedGoogle Scholar
  42. Tam, YY, Epstein, E, Normanly, J 2000Characterization of auxin conjugates in Arabidopsis. Low steady-state levels of indole-3-acetyl-aspartate, indole-3-acetyl-glutamate, and indole-3-acetyl-glucosePlant Physiol123589596CrossRefPubMedPubMedCentralGoogle Scholar
  43. Tam, YY, Slovin, JP, Cohen, JD 1998Continuous light alters indole-3-acetic acid metabolism in Lemna gibbaPhytochemistry491721CrossRefGoogle Scholar
  44. Temple, SJ, Knight, TJ, Unkefer, PJ, Sengupta-Gopalan, C 1993Modulation of glutamine synthetase gene expression in tobacco by an introduction of an alfalfa glutamine synthetase gene in sense and antisense orientation: molecular and biochemical analysisMol Gen Genet236315325CrossRefPubMedGoogle Scholar
  45. Towbin, H, Staehelin, T, Gordon, J 1979Electrophoretic transfer of proteins from polyacrylamide to nitrocellulose sheets: procedure and some applicationsProc Natl Acad Sci USA7643504354CrossRefPubMedPubMedCentralGoogle Scholar
  46. Tsurumi S, Wada S. 1990. Oxidation of indole-3-acetylaspartic acid in Vicia. In: Pharis RP, Rood SB (eds), Plant growth substances 1988, Berlin, Germany, Springer-Verlag, pp 353–359CrossRefGoogle Scholar
  47. Tuominen, H, Östin, A, Sundberg, B, Sandberg, G 1994A novel metabolic pathway for indole-3-acetic acid in apical shoots of Populus tremula (L.) × Populus tremuloides (Michx.)Plant Physiol10615111520CrossRefPubMedPubMedCentralGoogle Scholar
  48. Venis MA. 1972. Auxin-induced conjugation system in peas. Plant Physiol 49:24–27CrossRefPubMedPubMedCentralGoogle Scholar
  49. Walz, A, Park, S, Slovin, JP, Ludwig-Müller, J, Momonoki, Y,  et al. 2002A gene encoding a protein modified by the phytohormone indoleacetic acidProc Natl Acad Sci USA9917181723CrossRefPubMedPubMedCentralGoogle Scholar
  50. Woodward, AW, Bartel, B 2005Auxin: regulation, action, and interactionAnn Bot95707735CrossRefPubMedPubMedCentralGoogle Scholar
  51. Zenk, MH 19611-(Indole-3-acety)- β-D-glucose, a new compound in the metabolism of indole-3-acetic acid in plantsNature191493494CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Mridula Iyer
    • 1
  • Janet P. Slovin
    • 2
    Email author
  • Ephraim Epstein
    • 3
  • Jerry D. Cohen
    • 4
  1. 1.Department of Cell Biology and Molecular GeneticsUniversity of MarylandUSA
  2. 2.Fruit LaboratoryBeltsville Agricultural Research Center, Agricultural Research Service, United States Department of AgricultureBeltsvilleUSA
  3. 3.Department of Plant ScienceCook College, Rutgers-The State University of New JerseyNew BrunswickUSA
  4. 4.Department of Horticultural Science and Center for Microbial and Plant GenomicsUniversity of MinnesotaSaint PaulUSA

Personalised recommendations